

Potresi v letu 2015 Earthquakes in 2015

Izdajatelj

Ministrstvo za okolje in prostor Agencija RS za okolje Vojkova 1b, Ljubljana Spletni naslov: www.arso.gov.si e-naslov: gp.arso@gov.si

Urednik

dr. Andrej Gosar

Grafična priprava

Peter Sinčič

Uredniški svet

dr. Andrej Gosar Ina Cecić dr. Martina Čarman Matjaž Godec mag. Tamara Jesenko Peter Sinčič dr. Barbara Šket Motnikar mag. Izidor Tasič Polona Zupančič mag. Mladen Živčić

Naslovnica:

Trikomponentni zapis potresa 16. septembra 2015 magnitude 8,3 pod morskim dnom blizu obale Čila na potresni opazovalnici LJU državne mreže potresnih opazovalnic. Prikazan je 150 minut dolg zapis.

Cover Page:

Three-component seismogram of earthquake on 16 September 2015 (M_w =8.3) offshore of Chile, as recorded on LJU station. The figure shows a 150-minute long record.

Mednarodna standardna serijska številka:

ISSN 1318 - 4792

Kazalo / Contents

Peter Sinčič, Izidor Tasič, Mladen Živčić Potresne opazovalnice v Sloveniji v letu 2015 Seismic Network in Slovenia in 20154
Tamara Jesenko, Barbara Šket Motnikar, Ina Cecić, Matjaž Godec, Tatjana Prosen, Mladen Živčić Potresi v Sloveniji leta 2015 Earthquakes in Slovenia in 201513
Izidor Tasič, Marko Mali, Luka Pančur, Peter Sinčič, Igor Pfundner, Bojan Uran, Jože Prosen Delovanje državne mreže potresnih opazovalnic v letu 2015 Operation of Seismic Network of Slovenia in 201532
<i>Jurij Pahor</i> Učinkovitost pridobivanja podatkov iz državne mreže potresnih opazovalnic v letu 2015 Seismic Data Acquisition Efficiency for Seismic Network of the Republic of Slovenia in 201540
Martina Čarman, Mladen Živčić, Milka Ložar Stopar Potres 1. novembra 2015 na Gorjancih in popotresi The Earthquake of 1 November 2015 at Gorjanci Mountains and its Aftershocks44
Barbara Šket Motnikar, Matjaž Godec, Polona Zupančič, Ina Cecić Učinki potresa 1. novembra 2015 na Gorjancih Effects of the earthquake on 1 November 2015 at Gorjanci mountains
Milka Ložar Stopar, Mladen Živčić Žariščni mehanizmi nekaterih močnejših potresov v Sloveniji v letu 2015 Fault Plane Solutions of Selected Earthquakes in Slovenia in 2015
<i>Tamara Jesenko</i> Najmočnejši potresi po svetu leta 2015 World's Largest Earthquakes in 201569

Potresne opazovalnice v Sloveniji v letu 2015 Seismic Network in Slovenia in 2015

Povzetek

Abstract

V letu 2015 je na območju Slovenije delovalo 30 digitalnih potresnih opazovalnic z neprekinjenim prenosom podatkov v središče za obdelavo v Ljubljani, ena digitalna opazovalnica z neprekinjenim beleženjem podatkov na lokalni pomnilniški medij ter 12 opazovalnic, opremljenih z akcelerografi, za opazovanje seizmičnosti na urbanih območjih. Slednje beležijo in prenašajo v središče za obdelavo v Ljubljani samo zapise seizmičnih dogodkov, pri katerih pospeški presežejo prag proženja. Na opazovalnicah na Vojskem (VOJS) in na observatoriju na Golovcu v Ljubljani (LJU) delujeta še analogna seizmografa z zapisom s črnilom na papir. Večje posodobitve opreme smo izvedli na enajstih opazovalnicah. In the year 2015 there were 30 digital seismic stations incorporated in seismic network with real-time continuous data transmission to the data centre in Ljubljana, 1 digital station with continuous recording of data on local media, and 12 stations equipped only with accelerographs to monitor seismicity in urban areas. The latter record and transmit only triggered events to the data centre in Ljubljana. At Vojsko (VOJS) and Ljubljana (LJU) seismic stations, there are two analogue seismographs still recording with ink on paper. Major update of equipment was carried out at eleven seismic stations.

Analogne potresne opazovalnice

Na dveh potresnih opazovalnicah še vedno uporabljamo analogne seizmografe za beleženje potresov: na observatoriju na Golovcu v Ljubljani (LJU) in na Vojskem (VOY) (preglednica 1). Analogni seizmograf sestavljajo seizmometer, seizmografski ojačevalnik z ustreznimi filtri in pisač, ki seizmični signal s črnilom zapisuje na papir (Trnkoczy in Vidrih, 1986).

Digitalne potresne opazovalnice

V letu 2015 je v Sloveniji delovalo 31 digitalnih potresnih opazovalnic (preglednica 2). Z izjemo potresne opazovalnice STVP na Stojanskem Vrhu, kjer so se podatki shranjevali na lokalni pomnilniški medij, vse ostale potresne opazovalnice podatke samodejno prenašajo v središče za obdelavo podatkov (SOP) in rezervno središče na observatoriju na Golovcu v Ljubljani. V tem letu smo izvedli nekaj večjih posodobitev opreme. Pričeli smo z zamenjavo zajemalnih enot Quanterra Q730, ki bodo leta 2017 zaradi programskega hrošča prenehale delovati. Nadomestili smo jih z zajemalnimi enotami istega proizvajalca Quanterra, z oznako Q330HRS. Enota ima 6 kanalov in omogoča istočasni priklop seizmometra in akcelerometra. Na prvih treh kanalih za priklop seizmometra ima enota Q330HRS večje dinamično območje meritev kot Q730 (Tasič in sod., 2016) oziroma, povedano drugače, nižji lastni šum. Nove zajemalne enote smo namestili na enajstih opazovalnicah: BOJS, CRES, GORS, JAVS, KNDS, KOGS, LJU, MOZS, SKDS, VNDS in VISS (slika 2, slika 3). Druga večja sprememba je bila zamenjava obstoječega tipa komunikacije s SHDSL tehnologijo prenosa po dveh paricah, zaradi katere je prišlo do menjav modema in usmerjevalnika na opazovalnicah CADS, CRNS, GBRS, KOGS, MOZS, SKDS in VISS. Na opazovalnicah DOBS, GBAS, PDKS in ROBS pa smo zaenkrat zamenjali samo modem. V letu 2016 bo sledila zamenjava komunikacijske opreme tudi na ostalih opazovalnicah. Zaradi stalnega pronicanja vode

Preglednica 1: Analogni potresni opazovalnici v Sloveniji (slika 1) **Table 1:** Analogue seismic stations in Slovenia (Figure 1).

opaz. station	ozn. code	zem. šir. latitude ^O N	zem. dolž. longitude oE	n. viš. elev. [m]	geološka podlaga local geology	seizmometer seismometer	pisač recorder	začetek/konec delovanja start/stop time
Ljubljana 1958	LJU	46,0438	14,5277	396	karbonski peščenjak sandstone	kratkoperiodni shortperiod Willmore MkII 3-komp./comp.	ojačevalnik SO-01 pisač/ recorder Günter-Volk (črnilo/ ink)	1. 1. 1974 še deluje/ operating
Vojsko 1984	VOJS	46,0316	13,8882	1073	zgornjetriasni dolomit dolomite	kratkoperiodni shortperiod Willmore MkII 3-komp./comp.	ojačevalnik SO-03 pisač/ recorder VR-2 (črnilo/ ink)	januar 1991 še deluje/ operating

Preglednica 2: Digitalne potresne opazovalnice v Sloveniji v letu 2015

* - če opazovalnica konec leta še deluje, je vpisan samo datum začetka delovanja

Table 2: Digital seismic stations in Slovenia in 2015.

* - if the station is still operating at the end of the year, only a start time of operation is given

opaz.	ozn.	zem. šir.	zem. dol.	n. viš.	geološka	seizmometer	zajemalna	začetek
station	code	latitude ^O N	longit. ^O E	elev. [m]	podlaga local geology	seismometer	acquisition unit	delovanja start time
						akcelerometer/accelerometer 3-komp./comp. EpiSensor	0720	17. 2. 2004 16. 4. 2015
Bojanci	BOIS	15 5013	15 2519	252	kredni	širokopasovni/broadband 3-komp./comp. STS-2	Q730	25. 5. 2006 16. 4. 2015
1986	0000	40,0040	10,2010	202	limestone	širokopasovni/broadband 3-komp./comp. STS-2 akcelerometer/accelerometer 3-komp./comp. EpiSensor	Q330HRS	16. 4. 2015
Bistriški jarek 1990	BISS	46,6479	15,1270	490	metamorfne kamnine metamorphic rocks	širokopasovni/broadband 3-komp./comp. CMG-3ESPC akcelerometer/accelerometer 3-komp./comp. CMG-T5	CMG-EAM	21. 9. 2012 18. 11. 2015
Brezje pri	KB2D	15 0405	15 4300	208	glina	širokopasovni/broadband	HRD24	2. 9. 2011 10. 9. 2015
1990	NDZF	43,9403	13,4390	200	clay	3-komp./comp. CMG-40T	CMG-EAM	10. 9. 2015
Cerknica (Goričice)	CEY	45,7381	14,4221	579	apnenec limestone	širokopasovni/broadband 3-komp./comp. CMG-40T akcelerometer/accelerometer 3-komp./comp. FBA-23	Centaur	14. 5. 2014
1975						širokopasovni/broadband 3-komp./comp. CMG-3ESPC	Q730	18. 12. 2007
Cesta 1996	CESS	45,9733	15,4632	372	dolomit dolomite	širokopasovni/broadband 3-komp./comp. CMG-40T	HRD24- 2432	4. 9. 1997
Čadrg 2003	CADS	46,228	13,7368	700	kredni apnenci limestone	širokopasovni/broadband 3-komp./comp. CMG-3ESPC	Q730	3. 10. 2011
						širokopasovni/broadband 3-komp./comp. CMG-40T	Q730	28. 10. 2014 28. 10. 2015
Črešnjevec 2002	CRES	45,826	15,4569	430	dolomit dolomite	širokopasovni/broadband 3-komp./comp. STS-2 akcelerometer/accelerometer 3-komp./comp. EpiSensor	Q330HRS	28. 10. 2015
Črni Vrh 2005	CRNS	46,0807	14,2614	712	sp.triasni sivi dolomit dolomite	širokopasovni/broadband 3-komp./comp. CMG-3ESPC	Q730	23. 9. 2010

opaz	ozn	zem. šir.	zem. dol.	n. viš.	geološka	seizmometer	zajemalna	začetek
station	code	latitude ⁰ N	longit. ^O E	elev. [m]	podlaga local geology	seismometer	acquisition unit	delovanja start time
Dobrina 1996	DOBS	46,1494	15,4694	427	spodnjetriasni laporji marl	širokopasovni/broadband 3-komp./comp. CMG-3ESPC	Q730	11. 12. 2014
Gorenja Brezovica 2008	GBAS	45,9348	14,4434	538	zgornjetriasni dolomit dolomite	širokopasovni/broadband 3-komp./comp. CMG-3ESPC	Q730	6. 7. 2012
Gornia Briga		45 5044			zgornjetriasni	širokopasovni/broadband 3-komp./comp. CMG-40T	0700	5. 4. 2007 2. 9. 2015
2007	GBKS	45,5311	14,8101	610	dolomite	širokopasovni/broadband 3-komp./comp. CMG-3ESPC	Q730	2. 9. 2015
Gornji Cirnik 2003	GCIS	45,8672	15,6275	390	dolomit dolomite	širokopasovni/broadband 3-komp./comp. CMG-3ESPC	Q730	28. 7. 2010
Goliše 2002	GOLS	46,0107	15,6245	559	masiven dolomit massive dolomite	širokopasovni/broadband 3-komp./comp. CMG-40T BH	Q730	1. 3. 2002
					ploščasti	akcelerometer/accelerometer 3-komp./comp. EpiSensor	0700	17. 5. 2004 15. 4. 2015
Goriuše	0000	40.0474	40.0000	1040	apnenec z roženci	širokopasovni/broadband 3-komp./comp. CMG-3T	Q730	7. 4. 2011 15. 4. 2015
2004	GORS	46,3174	13,9999	1048	platty limestone with chert	širokopasovni/broadband 3-komp./comp. CMG-3T akcelerometer/accelerometer 3-komp./comp. EpiSensor	Q330HRS	15. 4. 2015
Grobnik 2002	GROS	46,4610	15,5017	930	tonalit tonalite	širokopasovni/broadband 3-komp./comp. CMG-3ESPC	Q730	13. 8. 2012
Javornik	JAVS	45 8934	14 0643	1100	zgornje triasni dolomit	širokopasovni/broadband	Q730	25. 9. 2013 13. 8. 2015
2003			,		dolomite	3-komp./comp CMG-31	Q330HRS	13. 8. 2015
Knežji dol	KNDS	45.5279	14.3806	1024	zgornje jurski apnenec	širokopasovni/broadband	Q730	22. 1. 2014 3. 6. 2015
2003					limestone	3-котр./сотр. 515-2	Q330HRS	3. 6. 2015
						akcelerometer/accelerometer 3-komp./comp. EpiSensor	0730	26. 1. 2004 23. 4. 2015
Kog	KOGS	46 4481	16 2503	245	glina	širokopasovni/broadband 3-komp./comp. CMG-3T	0750	13. 7. 2012 23. 4. 2015
2004			10,2000	240	clay	širokopasovni/broadband 3-komp./comp. CMG-3T akcelerometer/accelerometer 3-komp./comp. EpiSensor	Q330HRS	23. 4. 2015
Legarie					sivi dolomit	širokopasovni/broadband 3-komp./comp.CMG-40TBH	Q730	2. 9. 2002
2002	LEGS	45,9488	15,3177	390	dolomite	akcelerometer/accelerometer 3-komp./comp. FBA-23	Centaur	4. 7. 2014
Lisca 2002	LISS	46,0673	15,2906	948	masiven dolomit massive dolomite	širokopasovni/broadband 3-komp./comp. CMG-40T	EDR-209	30. 7. 2013
					karbonski	širokopasovni/broadband 3-komp./comp. CMG-40T	RD3 1639	22. 5. 1996 19. 6. 2015
Ljubljana 1958	LJU	46,0438	14,5278	396	peščenjaki sandstone	širokopasovni/broadband 3-komp./comp. STS-2	Q730	20. 12. 2005 24. 3. 2015
						akcelerometer/accelerometer 3-komp./comp. EpiSensor	Q330HRS	24. 3. 2015

opaz.	ozn.	zem. šir.	zem. dol.	n. viš.	geološka	seizmometer	zajemalna	začetek
station	code	latitude ^O N	longit. ^O E	elev. [m]	podlaga local geology	seismometer	acquisition unit	delovanja start time
					ploščasti	širokopasovni/broadband 3-komp./comp. CMG-3T	Q730	17. 6. 2013 14. 4. 2015
Možjanca 2005	MOZS	46,2941	14,4433	660	apnenec platty limestone	širokopasovni/broadband 3-komp./comp. CMG-3T širokopasovni/broadband 3-komp./comp. CMG-5T	Q330HRS	14. 4. 2015
Pernice 2002	PERS	46,636	15,1167	795	blestnik schist	širokopasovni/broadband 3-komp./comp. CMG-3ESPC	Q730	21. 6. 2011
						širokopasovni/broadband 3-komp./comp.CMG-40TBH	Q730	11. 11. 2002
Podkum 2002	PDKS	46,0612	14,9977	679	dolomit dolomite	širokopasovni/broadband 3-komp./comp. CMG-40TBH akcelerometer/accelerometer 3-komp./comp. FBA-23	Taurus	30. 9. 2014
Robič 2002	ROBS	46,2445	13,5094	257	apnenec limestone	širokopasovni/broadband 3-komp./comp. CMG-3ESPC	Q730	10. 8. 2011
Skadanščina	SKDS	45 5464	14 0143	552	ploščati	širokopasovni/broadband 3-komp./comp. STS-2	Q730	12. 4. 2006 1. 4. 2015
2006		10,0101	,	001	platy limestone	akcel./accelerometer 3-komp./comp. EpiSensor	Q330HRS	1. 4. 2015
Stojanski vrh 2015	STVP	45,8564	15,5350	276	dolomit dolomite	širokopasovni/broadband 3-komp./comp. Le-3D/5s	PR6-24	1. 11.2015
Višnje	VISS	45 8033	14 8393	399	siv apnenec	širokopasovni/broadband	Q730	17. 4. 2013 10. 6. 2015
2003		10,0000	11,0000		limestone	3-komp./comp. CMG-3T	Q330HRS	10. 6. 2015
Vojsko 2004	VOJS	46,0322	13,8877	1072	zgornjetriasni dolomit dolomite	širokopasovni/broadband 3-komp./comp. CMG-3ESPC	Q730	15. 10. 2008
Vrh pri Dolskem		46 1016	14 7014	531	kremenov peščenjak	širokopasovni/broadband	Q730	18. 8. 2009 21. 8. 2015
2006					quartz sandstone	3-komp./comp.CMG-3ESPBH	Q330HRS	21. 8. 2015
Zavodnje 2005	ZALS	46,4342	15,0246	749	granodiorit granodiorite	širokopasovni/broadband 3-komp./comp. CMG-40T	Q730	11. 8. 2008

v seizmološki jašek na opazovalnicah CRNS in DOBS ter v servisni jašek na opazovalnicah GBRS, KOGS in MOZS, smo tam namestili črpalke za samodejno izčrpavanje vode iz jaška, ko gladina naraste toliko, da sproži delovanje črpalke.

Ukinili smo opazovalnico BISS v Sv. Jerneju v Bistriškem jarku.

Začasno potresno opazovalnico STVP smo postavili v Stojanskem Vrhu po potresu, ki se je zgodil 1. novembra 2015 z magnitudo 4,2 na območju Gorjancev.

Opazovalnice za beleženje močnih potresov

V letu 2015 smo imeli na območju Slovenije nameščenih tudi nekaj akcelerometrov. Na potresnih opazovalnicah državne mreže in dopolnilnih opazovalnicah je bilo vključenih skupaj s seizmometri deset akcelerometrov (BISS, BOJS, CEY, CRES, GORS, KOGS, LEGS, LJU, PDKS in SKDS). Na začasni opazovalnici ZPVE je bil postavljen akcelerometer (preglednica 3). Stalno nameščenih imamo tudi deset samostoječih pospeškometrov/akcelerografov (BOGE, BOVC, DOLA, DRZN, GOTE, ILBA, KOBR, NEK0, FAGG in VOGR; preglednica 3). Prenos podatkov z opazovalnice ILBA poteka neprekinjeno preko komu-

Slika 1: Potresne opazovalnice Urada za seizmologijo in geologijo leta 2015 *Figure 1*: Seismic network of Seismology and Geology Office in 2015.

Slika 2: Namestitev nove zajemalne enote Quanterra Q330HRS v seizmičnem jašku. (foto: I. Tasič). *Figure 2*: Installation of new acquisition unit Quanterra Q330 in seismic shaft. (Photo: I. Tasič).

Slika 3: Pogled na potresno opazovalnico MOZS, kjer smo zamenjali komunikacijsko in seizmološko opremo ter namestili sistem za samodejno črpanje vode (foto: I. Tasič)

Figure 3: View of seismic station MOZS where the new communication and acquisition equipment, along with automatic water pumping system was installed.(Photo: I. Tasič)

nikacijskega omrežja državnih organov, z ostalih opazovalnic pa preko klicne povezave (linija ali GSM) ob močnejšem dogodku. Slednji instrumenti delujejo v prožilnem načinu in beležijo le dogodke, ki imajo pospeške tal večje od nastavljenega praga proženja. Podatki o času delovanja posameznih opazovalnic, njihovih oznakah, lokacijah in serijskih številkah so prikazani v preglednici 3.

Preglednica 3: Podatki o samostoječih opazovalnicah za beleženje močnih potresov, ki so v Sloveniji delovale v letu 2015.

opaz. station	ozn. code	zem. šir. latitude °N	zem. dol. Iongitude °E	nad. viš. elev. [m]	senzor sensor type	zajemalna naprava acquisition unit	ser. številka serial number	merilni obseg full scale range	čas delovanja operational time
Bogenšperk	BOGE	46,0237	14,8572	422	FBA-23	Etna	1245	1 g	vse leto
Bovec	BOVC	46,3382	13,5543	455	FBA-23	Etna	1476	4 g	vse leto
Dolsko	DOLA	46,0938	14,6781	265	FBA-23	Etna	810	1 g	vse leto
Drežnica	DRZN	46,2586	13,6126	544	EpiSensor	Etna	2134	2 g	vse leto
Gotenica	GOTE	45,6095	14,7464	670	FBA-23	Etna	1246	1 g	vse leto
Ilirska Bistrica	ILBA	45,5638	14,2446	404	FBA-23	EDR 209	6142	0,25 g	vse leto
Kobarid	KOBR	46,2474	13,5786	234	EpiSensor	Etna	2133	2 g	vse leto
Krško (NEK)	NEK0	45,9391	15,5185	156	FBA-23	Etna	1334	2 g	vse leto
Ljbljana - FGG	FAGG	46,0459	14,4944	295	FBA-23	Etna	6597	2 g	vse leto
Postojna	POST	45,7756	14,2129	545	FBA-23	Etna	811	1 g	vse leto
Vogršček	VOGR	45,9057	13,7259	106	EpiSensor	K2	2228	2 g	vse leto
Župeča vas	ZPVE	45,8841	15,5263	154	EpiSensor	Etna	1477	4 g	od 1. 11. 2015 dalje

Table 3: Freestanding strong motion seismic stations operating in Slovenia in 2015.

Število zabeleženih potresnih dogodkov

Slovenske potresne opazovalnice so v letu 2015 zabeležile 4928 potresnih dogodkov, od tega 2876 lokalnih potresov, 291 bližnjih in 717 oddaljenih (ARSO, 2015). Seizmografi so zapisali tudi 1044 umetnih potresov (preglednica 4, sliki 4 in 5). Potresni dogodek je namreč lahko naravnega ali umetnega izvora.

Literatura

- Agencija Republike Slovenije za Okolje, 2015. Baza podatkov za potrese na ozemlju Slovenije leta 2015. Arhiv ARSO, Ljubljana.
- Mali, M., Tasič, I., 2014. Nadzorni sistem za kontrolo nivoja vode in stabilnosti temperature. Potresi v letu 2013 (ur. A. Gosar), ARSO, Urad za seizmologijo in geologijo, 48–52.
- Sinčič, P., Tasič, I., Živčić, M.,2016. Potresne opazovalnice v Sloveniji v letu 2014. Potresi v letu 2014 (ur. A. Gosar), ARSO, Urad za seizmologijo in geologijo, 9–16.

Slika 4: Število potresnih dogodkov po mesecih v letu 2015 *Figure 4*: Monthly distribution of seismic events in 2015.

Slika 5: Število naravnih (oddaljenih, bližnjih in lokalnih posebej) in umetnih potresov po mesecih v letu 2015 *Figure 5*: Monthly distribution of earthquakes (distant, regional, local) and artificial events in 2015.

Preglednica 4: Potresi v letu 2014, zabeleženi na slovenskih potresnih opazovalnicah. **Table 4:** Earthquakes in 2014 recorded at Slovenian seismic stations.

mesec	oddaljeni potresi	bližnji potresi	lokalni potresi	umetni potresi	dogodki						
month	distant earthquakes	regional earthquakes	local earthquakes	artificial	events						
januar January	44	26	151	103	324						
februar February	50	22	191	64	327						
marec March	45	23	216	87	371						
april April	59	32	156	55	302						
maj May	89	26	150	70	335						
junij June	71	20	134	103	328						
julij July	89	32	173	105	399						
avgust August	56	32	200	146	434						
september September	55	15	172	131	373						
oktober October	41	18	128	65	252						
november November	66	29	893	62	1050						
december December	52	16	312	53	433						
skupaj Total	717	291	2876	1044	4928						
legenda Legend	Legenda: $\Delta > 10^{\circ}$ (> 1.100 km) Oddaljeni potresi / Distant earthquakes $\Delta > 10^{\circ}$ (> 1.100 km) Regionalni potresi / Regional earthquakes $1,5^{\circ} < \Delta < 10^{\circ}$ (< 1.100 km) Lokalni potresi / Local earthquakes $\Delta < 1,5^{\circ}$ (≤ 160 km) A - oddalienost od Liubliane v kotnih stoniniah: 1° predstavlja približna										
	111,1 km v sm	eri sever - jug in	77km v smeri v	zhod- zahod							

Tasič, I., Mali, M., Pfundner, I., Pančur, L., 2016. Zajemalna enota Quanterra Q330HRS; preliminarni test šestih enot. Potresi v letu 2014 (ur. A. Gosar), ARSO, Urad za seizmologijo in geologijo, 50–54.

Trnkoczy, A., Vidrih, R., 1986. Seizmološka stanica Vojsko (VOY) u SR Sloveniji. Acta seismologica lugoslavica 12, 17–34. Tamara Jesenko, Barbara Šket Motnikar, Ina Cecić, Matjaž Godec, Tatjana Prosen, Mladen Živčić

Potresi v Sloveniji leta 2015 Earthquakes in Slovenia in 2015

Povzetek

Abstract

Leta 2015 je državna mreža potresnih opazovalnic zabeležila 2876 potresov v Sloveniji ali bližnji okolici, 24 jih je imelo lokalno magnitudo večjo ali enako 2,0. Prebivalci so čutili vsaj 116 potresnih sunkov, med katerimi sta dva povzročila poškodbe objektov. Največjo intenziteto, VII EMS-98, je imel potres, ki se je zgodil 1. novembra ob 7.52 po univerzalnem koordiniranem času (UTC) oziroma ob 8.52 po srednjeevropskem času (SEČ) na Gorjancih. Z lokalno magnitudo 4,2 je bil tudi najmočnejši potres v Sloveniji leta 2015. Nekaj škode je povzročil tudi potres, ki se je zgodil 29. avgusta 2015 pri Bovcu. Imel je lokalno magnitudo 3,9 in učinke V EMS-98. In 2015 the Seismic Network of the Republic of Slovenia (SNRS) recorded 2876 local earthquakes. There were 24 earthquakes among them with local magnitude equal to or higher than 2.0. The inhabitants felt at least 116 earthquakes, 2 among them caused minor damage to buildings. The maximum intensity in Slovenia in 2015, VII EMS-98, was observed on 1 November at 7:52 UTC (8:52 Central European Time (CET)) in the villages in Gorjanci Mountains. It was the strongest earthquake in 2015, with local magnitude 4.2. Another earthquake that also caused minor damage took place on 29 August with the epicentre near Bovec. Its local magnitude was 3.9, and the maximum intensity V EMS-98.

Uvod

V prvem delu prispevka je predstavljena potresna dejavnost v Sloveniji leta 2015, v drugem pa so opisani nekateri močnejši potresi. Predvsem je opisano, kako so jih ljudje zaznali in kakšni so bili njihovi učinki.

Potresna dejavnost v Sloveniji leta 2015

Potresne opazovalnice državne mreže so leta 2015 zabeležile 2876 lokalnih potresov z žariščem v Sloveniji ali njeni bližnji okolici. Za 2530 lokalnih potresov smo zbrali dovolj podatkov, torej zapise z vsaj treh opazovalnic, da smo lahko izračunali lokacijo žarišča. Za 2523 izmed njih, ki so prikazani na sliki 1, smo lahko določili tudi magnitudo. 24 potresov je imelo lokalno magnitudo večjo ali enako 2,0, od tega dva večjo ali enako 3,0. Po podatkih za obdobje 1991–2014 se v Sloveniji vsako leto v povprečju zgodi 42 potresov z lokalno magnitudo večjo ali enako 2,0 in štirje potresi z lokalno magnitudo večjo ali enako 3,0 (ARSO, 2016). Histogram na sliki 2 kaže porazdelitev lokalne magnitude (M₁, 98 odstotkov vseh potresov je imelo lokalno magnitudo manjšo od 1,7.

Porazdelitev globine žarišč potresov (slika 3) kaže, da so imeli leta 2015 vsi potresi na območju Slovenije in bližnje okolice (2530) žarišča do globine 24 km. 54 odstotkov potresov je imelo žariščno globino enako ali manjšo od 6 km, 42 odstotkov potresov se je zgodilo na globini med 6,1 in 15 km, 82 potresov (3 %) je imelo žarišče v globini med 15,1 in 18 km, 20 potresom (1 %) pa smo določili žariščno globino večjo od 18 km.

Leto 2015 je zaznamoval niz potresov na Gorjancih, ki se je začel 1. novembra s potresom ob 7.52 po UTC oziroma ob 8.52 po SEČ blizu Vinjega Vrha. Z lokalno magnitudo 4,2 je bil to najmočnejši potres leta

Slika 1: Nadžarišča potresov leta 2015, ki smo jim določili žariščni čas, koordinati nadžarišča in globino žarišča. Barva simbola ponazarja žariščno globino, njegova velikost pa vrednost lokalne magnitude M_{LV}

Figure 1: Distribution of earthquake epicentres in 2015 with calculated hypocentral time, epicentral coordinates and focal depth; coloured symbols of varying sizes denote focal depth and local magnitude $M_{_{LV}}$

Slika 2: Porazdelitev magnitude (M_{LV}) potresov v Sloveniji leta 2015 *Figure 2*: Distribution of earthquakes in Slovenia in 2015 with respect to M_{LV} magnitude.

Slika 3: Porazdelitev globine žarišča potresov v Sloveniji leta 2015 (v kilometrih) Figure 3: Distribution of earthquakes in Slovenia in 2015 with respect to focal depth (in kilometres).

2015. Bil je tudi potres z največjo ocenjeno intenziteto leta 2015, in sicer VII EMS-98. Kratica EMS-98 je okrajšava za zadnjo različico evropske potresne lestvice iz leta 1998 (Grünthal, 1998). Potres so čutili prebivalci celotne Slovenije, zahodne Hrvaške, Istre ter ponekod v Italiji in Avstriji. Povzročil je tudi gmotno škodo. Najmočnejši popotres se je zgodil 16 minut kasneje, ob 8.08 po UTC (9.08 SEČ). Njegova lokalna magnituda je bila 2,9.

Po močnejših potresih v bližini nadžarišča postavimo še dodatne, začasne potresne opazovalnice, ki nam omogočijo natančnejši izračun osnovnih parametrov popotresov ali potresnega niza, kot sta lokacija žarišča in globina potresa. Tokrat smo postavili dve začasni opazovalnici, hrvaški seizmologi pa so postavili še dve na hrvaški strani. Na Gorjancih bi novembra in decembra leta 2015 brez podatkov iz začasnih opazovalnic lahko izračunali lokacijo nadžarišča za le 31 odstotkov potresov (246 od 781), saj je bila večina tako šibkih, da sta jih zaznali le najbližji opazovalnici državne mreže pri Cirniku (GCIS) in pri Črešnjevcu pri Oštrcu (CRES). Potresni niz na Gorjancih je obširneje obravnavan v dveh samostojnih prispevkih (Šket Motnikar in drugi, 2016; Čarman in drugi, 2016).

Tudi drugi najmočnejši potres leta 2015 je povzročil nekaj škode. Prebivalce zahodne in osrednje Slovenije je prestrašil potres z žariščem pri Bovcu, ki se je zgodil 29. avgusta ob 18.47 po UTC oziroma ob 20.47 po srednjeevropskem poletnem času (SEPČ). Lokalna magnituda potresa je bila 3,9, največja intenziteta pa V EMS-98. Sledilo mu je nekaj popotresov. Najmočnejši, z lokalno magnitudo 2,3, se je zgodil 23. septembra ob 1.53 po UTC (3.53 SEPČ).

V preglednici 1 so osnovni podatki za 82 lokalnih potresov z izračunano lokalno magnitudo, večjo ali enako 1,5, od katerih so jih prebivalci Slovenije čutili 43. Poleg teh je navedenih še 68 šibkejših potresov, ki so jih prebivalci Slovenije čutili in smo jim lahko izračunali lokacijo nadžarišča. Za vsak potres so navedeni datum (leto, mesec, dan), žariščni čas po UTC (ura, minuta, sekunda), koordinati nadžarišča (zemljepisna širina °N, zemljepisna dolžina °E), globina žarišča (km), lokalna magnituda (M_{LV}) in največja intenziteta (I_{max} EMS-98), ki jo je potres dosegel v Sloveniji. V stolpcu Potresno območje je za večino nadžarišč v Sloveniji podano ime naselja, ki je najbližje nadžarišču in je navedeno v seznamu naselij Geodetske uprave RS (RGU, 1995). Če podatki niso zadoščali za nedvoumno določitev intenzitete, smo potresu pripisali razpon mogočih vrednosti (npr. IV–V).

Preglednica 1: Seznam potresov leta 2015, ki imajo lokalno magnitudo večjo ali enako 1,5 in smo jim lahko izračunali žariščni čas, koordinati nadžarišča (epicentra) ter globino žarišča. Pri potresih, ki so jih ljudje čutili, je navedena še največja intenziteta. V preglednici je tudi 68 potresov s sicer manjšo lokalno magnitudo, vendar so jih prebivalci Slovenije čutili in smo jim tudi lahko določili osnovne parametre.

Table 1: List of earthquakes with $M_{LV} \ge 1.5$ in 2015, for which the hypocentral time, coordinates of the epicentre and the focal depth were calculated; the maximum intensity of felt earthquakes is also provided. Information on 68 earthquakes with lower magnitude felt by the inhabitants of Slovenia and for which we also calculated the hypocentral time, coordinates of the epicentre and the focal depth, is also included.

datum		čas (UTC)			z. šir.	z. dolž.	h		RMS		l _{max}	natura na akwažia	
leto	mesec	dan	h	m	s	°N	°E	km	nst	S		EMS 98	potresno obmocje
	date			time (UTC))	lat	lon	h	not	RMS	M	l _{max}	onicontrol crop
year	month	day	h	min	s	°N	°E	km		S		EMS 98	epicentral alea
2015	1	3	13	32	15,6	46,46	14,54	10	47	0,4	1,8	Ш	Ebriach (Obirsko), Avstrija
2015	1	5	2	57	50	45,54	14,77	16	51	0,5	2,2		Borovec pri Kočevski Reki
2015	1	6	16	20	14,7	45,58	15,27	4	21	0,3	1,3	III	Cerkvišče
2015	1	12	0	11	14,3	45,53	14,29	11	19	0,4	1,5		Gornji Zemon
2015	1	14	11	10	47,7	46,27	14,72	17	64	0,5	2,5	Ш	Poljana
2015	1	15	8	14	0,7	46,26	14,72	15	42	0,5	1,9	Ш	Poljana
2015	1	15	23	48	58,6	45,52	15,25	8	33	0,5	1,5	Ш	Pribinci
2015	1	22	14	1	33,8	46,40	13,78	9	17	0,3	1,1	čutili	Trenta
2015	1	25	15	7	19,7	45,93	14,48	5	8	0,2	0,4	III-IV	Strahomer
2015	1	27	6	57	53,3	45,53	15,31	9	26	0,4	1,6		Dolenjci, meja Slovenija-Hrvaška
2015	1	27	21	56	54,2	46,38	14,89	9	33	0,4	1,7	IV	Planina
2015	1	29	21	30	16,6	46,44	14,22	16	45	0,5	1,5		Rajutza (Rjavca), meja Avstrija- Slovenija
2015	2	1	17	53	51,6	45,75	14,85	5	35	0,3	1,7		Seč
2015	2	3	0	10	5,5	45,69	15,65	15	56	0,4	2,1		Zdihovo, Hrvaška
2015	2	7	3	12	1	46,52	15,25	8	30	0,5	1,6		Hudi Kot
2015	2	8	1	40	10,4	46,49	13,42	13	53	0,4	1,8		Malborghetto (Naborjet), Italija

datum		čas (UTC)			z. šir.	z. dolž.	h		RMS		I _{max}	, , , , ,	
leto	mesec	dan	h	m	s	°N	°E	km	nst	s	M _{LV}	EMS 98	potresno obmocje
	date			time (UTC))	lat	lon	h	not	RMS		I _{max}	
year	month	day	h	min	s	°N	°E	km	nst	s		EMS 98	epicentrai area
2015	2	10	7	37	31	45,85	15,29	9	47	0,4	2,1	III-IV	Prapreče pri Šentjerneju
2015	2	11	12	12	46,6	46,10	14,21	5	31	0,6	1,5	IV	Bukov Vrh
2015	2	13	1	19	22,6	46,15	15,03	10	40	0,5	1,5	IV	Prapreče
2015	2	13	10	14	33,9	46,15	15,02	10	56	0,4	2,4	IV-V	Prapreče
2015	2	14	9	31	35,6	46,28	13,68	13	53	0,4	1,8	III	Lepena
2015	2	16	6	45	34,5	45,50	15,28	4	8	0,1	0,9	III	Bojanci
2015	3	1	6	13	13,3	45,89	15,47	7	32	0,3	1,4	III-IV	Jelše
2015	3	1	8	20	47,3	46,51	15,40	2	13	0,2	1,5		Kumen
2015	3	8	18	31	52,1	45,86	15,07	6	22	0,3	0,9	IV	Mirna peč
2015	3	12	9	23	55,1	45,52	15,25	1	10	0,3	1,1	III-IV	Bojanci
2015	3	15	5	57	34,2	46,15	15,06	9	21	0,3	0,8	III	Trbovlje
2015	3	22	14	40	39,8	45,87	15,57	6	27	0,4	1,3	III-IV	Kraška vas
2015	3	22	15	46	49,5	45,76	14,04	10	54	0,5	2,1	III-IV	Otošče
2015	3	23	17	4	22,3	45,87	15,56	4	33	0,5	1,4	IV	Stankovo
2015	3	24	1	45	27,7	45,88	15,56	2	15	0,2	0,6	III-IV	Velike Malence
2015	3	25	10	54	14,9	45,88	15,58	5	21	0,3	1,2	III-IV	Mrzlava vas
2015	3	25	12	24	52,6	45,82	15,43	2	8	0,3	0,8	Ш	Orehovec
2015	3	27	11	53	22,9	46,09	14,45	15	44	0,5	2,0		Dvor
2015	3	27	11	53	29,8	46,10	14,46	15	5	0,5	1,8		Šentvid pri Ljubljani
2015	3	27	15	1	14,5	46,09	14,45	15	38	0,5	1,7		Dvor
2015	3	29	17	47	59,5	45,92	14,18	20	51	0,5	1,8		Ravnik pri Hotedršici

	datum		čas (UTC)			z. šir.	z. dolž.	h		RMS		I _{max}	
leto	mesec	dan	h	m	s	°N	°E	km	nst	s	∣ MI _{LV}	EMS 98	potresno obmocje
	date			time (UTC))	lat	lon	h	not	RMS		I _{max}	
year	month	day	h	min	s	°N	°E	km	nst	S		EMS 98	epicentral area
2015	4	5	2	55	13,1	45,72	15,75	8	26	0,4	1,5		Tržić, Hrvaška
2015	4	8	0	0	36,7	45,91	15,29	5	39	0,4	1,5	III-IV	Škocjan
2015	4	9	8	21	1,1	45,89	15,30	3	21	0,3	1,3	- 111	Dolnja Stara vas
2015	4	9	8	32	49	45,89	15,26	4	5	0,1	0,5	- 111	Šmarjeta
2015	4	11	12	32	38,8	46,19	13,68	13	21	0,2	1,5		Gabrje
2015	4	15	19	22	0,2	46,14	15,00	7	4	0,5	<0.1	III	Zagorje ob Savi
2015	4	18	5	5	9,6	45,75	15,13	6	27	0,3	1,3	IV	Veliki Podljuben
2015	4	25	5	51	5,1	46,53	13,88	11	34	0,4	1,7	ш	Altfinkenstein (Stari Grad), Avstrija
2015	4	29	8	24	26,4	46,16	15,06	9	25	0,3	1,1	IV	Ojstro
2015	5	7	16	20	41,8	46,04	15,86	17	54	0,5	2,2		Jalšje, Hrvaška
2015	5	10	8	57	40,2	46,04	15,12	10	39	0,4	1,9		Kladje pri Krmelju
2015	5	12	6	45	30,3	45,44	14,50	15	39	0,4	1,9		Platak, Hrvaška
2015	5	14	15	27	18,3	45,81	15,41	1	20	0,4	1,5	III	Podstrm
2015	5	17	11	26	30,8	46,18	14,99	14	41	0,5	1,5		Znojile
2015	5	17	21	35	59,1	46,29	13,36	16	49	0,4	1,8	III	Monteaperta (Viškorša), Italija
2015	5	20	4	40	31,2	45,76	14,84	0	5	0,1	0,6	čutili	Seč
2015	5	22	23	56	30,4	45,41	15,38	1	54	0,5	2,1		Protulipa, Hrvaška
2015	5	23	20	25	10,1	45,76	14,85	0	7	0,1	0,6	Ш	Seč
2015	5	24	6	33	39,8	46,15	15,05	7	21	0,3	0,9	III-IV	Trbovlje
2015	5	25	18	42	6,4	45,83	15,42	3	26	0,4	1,2	Ш	Orehovec
2015	5	25	18	44	31,6	45,82	15,42	0	9	0,3	0,6	III	Orehovec

datum		čas (UTC)			z. šir.	z. dolž.	h		RMS		l _{max}		
leto	mesec	dan	h	m	s	°N	°E	km	nst	s	∣ MI _{LV}	EMS 98	potresno obmocje
	date			time (UTC))	lat	lon	h	not	RMS	M	I _{max}	onicontrol area
year	month	day	h	min	S	°N	°E	km	nst	S		EMS 98	epicentrai area
2015	5	25	20	20	5,8	45,82	15,42	0	8	0,4	0,3	zvok	Orehovec
2015	5	29	5	58	15,8	45,87	15,88	12	23	0,3	1,6		Jablanovec, Hrvaška
2015	5	30	1	23	21,2	46,61	15,06	9	10	0,3	1,5		Sv. Boštjan
2015	5	31	23	10	13,1	45,91	15,28	6	52	0,4	2,2	IV	Škocjan
2015	6	5	0	49	21,3	45,51	15,32	6	18	0,3	1,1	Ш	Vrhovci
2015	6	6	16	53	25,3	45,92	15,29	1	36	0,5	1,2	III	Zloganje
2015	6	21	10	36	9,9	46,06	14,22	10	49	0,4	1,9		Planina nad Horjulom
2015	6	22	6	43	49,3	45,45	15,35	9	38	0,3	2,0		Vukova Gorica, Hrvaška
2015	7	7	15	18	7,8	45,63	15,25	8	3	0,1	0,4	Ш	Geršiči
2015	7	13	22	42	16,2	46,24	15,02	18	35	0,6	1,6		Tabor
2015	7	16	12	12	29,3	46,08	14,41	18	57	0,4	2,3	III-IV	Gabrje
2015	7	20	19	7	27,5	46,33	13,29	13	41	0,3	1,6		Musi (Mužac), Italija
2015	7	23	20	42	51,9	46,04	14,28	7	4	0,1	<0.1	II	Samotorica
2015	7	24	6	35	43,4	46,30	13,60	7	25	0,3	1,5	čutili	Čezsoča
2015	7	26	23	16	38,4	45,85	15,21	5	39	0,4	1,3	III-IV	Paha
2015	7	27	14	49	18,8	46,15	15,06	8	27	0,5	1,0	III	Trbovlje
2015	7	28	2	5	59,7	45,55	15,16	7	9	0,4	0,6	Ш	Kvasica
2015	8	16	17	51	52,8	45,51	14,17	11	17	0,3	1,5		Račice
2015	8	23	13	5	22,8	46,11	14,94	12	49	0,5	2,2	III-IV	Senožeti
2015	8	23	20	44	32,1	46,10	14,46	12	40	0,4	1,5	Ш	Dvor
2015	8	29	18	47	3,9	46,32	13,61	7	109	0,5	3,9	V	Kal-Koritnica

	datum		čas (UTC)			z. šir.	z. dolž.	h		RMS		I _{max}	
leto	mesec	dan	h	m	s	°N	°E	km	nst	s	∣ MI _{LV}	EMS 98	potresno obmocje
	date			time (UTC)		lat	lon	h	not	RMS	M	I _{max}	onicontrol orog
year	month	day	h	min	s	°N	°E	km	nsi	S		EMS 98	epicentral alea
2015	8	29	19	29	1,7	46,32	13,61	8	32	0,3	1,6	Ш	Kal-Koritnica
2015	8	30	0	2	50,4	46,32	13,60	9	16	0,3	0,8	III	Kal-Koritnica
2015	9	16	10	48	15	45,85	14,10	16	27	0,3	1,6		Podkraj
2015	9	18	7	52	20,1	46,46	13,44	7	28	0,3	1,7		Malborghetto (Naborjet), Italija
2015	9	22	20	30	12,1	46,03	14,04	18	39	0,4	1,3	III	Pečnik
2015	9	23	1	53	9,8	46,32	13,60	10	74	0,4	2,1	III-IV	Kal-Koritnica
2015	9	24	23	51	20	46,07	14,41	17	49	0,4	1,6		Gabrje
2015	9	25	10	26	34,8	46,30	13,59	7	22	0,2	1,7		Magozd
2015	9	26	16	28	32,7	45,48	15,35	2	16	0,5	1,2	III	Gornje Prilišće, meja Slovenija- Hrvaška
2015	9	27	15	14	10	45,50	15,32	1	7	0,5	0,5	III	Vrhovci
2015	9	27	17	50	12,9	45,48	15,35	1	5	0,4	1,0	III	Preloka
2015	9	28	3	18	18,8	45,46	15,33	7	5	0,3	0,9	III	Balkovci
2015	10	14	5	52	31,2	46,03	14,25	7	45	0,5	1,9	III-IV	Samotorica
2015	10	17	19	37	39,3	46,32	13,61	9	32	0,3	1,5		Kal-Koritnica
2015	10	22	23	40	46,8	46,18	14,38	10	53	0,5	1,8	III	Меја
2015	10	28	20	11	28,7	46,03	14,96	7	16	0,3	0,9	zvok	Javorje pri Gabrovki
2015	10	28	20	49	0,7	46,60	15,13	11	6	0,3	1,5		Dravče
2015	10	30	13	4	15,8	45,86	15,55	5	25	0,4	1,4	III	Brvi
2015	10	31	5	41	5,2	45,77	14,21	19	57	0,5	1,9		Stara vas
2015	10	31	18	26	30,9	45,85	13,55	15	26	0,4	1,4	III	Marcottini (Poljane), Italija
2015	10	31	23	31	39,5	46,02	14,24	13	43	0,4	1,6	III	Šentjošt nad Horjulom

datum		čas (UTC)			z. šir.	z. dolž.	h		RMS		l _{max}		
leto	mesec	dan	h	m	s	°N	°E	km	nst	s	M _{LV}	EMS 98	potresno obmocje
	date			time (UTC))	lat	lon	h	not	RMS		I _{max}	
year	month	day	h	min	s	°N	°E	km	nst	s		EMS 98	epicentrai area
2015	11	1	7	52	33	45,85	15,54	6	90	0,5	4,2	VII	Vinji Vrh
2015	11	1	8	8	2,4	45,87	15,52	9	75	0,4	2,9	IV	Bušeča vas
2015	11	1	8	10	52,7	45,85	15,54	6	15	0,3	1,1	Ш	Vinji Vrh
2015	11	1	8	14	15,4	45,86	15,53	7	38	0,4	1,8	III	Vinji Vrh
2015	11	1	8	48	13,8	45,86	15,55	4	16	0,3	1,1	čutili	Izvir
2015	11	1	8	51	50,6	45,87	15,53	5	30	0,3	1,5		Poštena vas
2015	11	1	12	24	42,8	45,88	15,54	6	24	0,3	1,2	III	Gorenja Pirošica
2015	11	1	17	44	58,4	46,14	14,86	9	42	0,5	1,5	III	Log pri Mlinšah
2015	11	2	9	1	30,3	45,98	14,12	22	40	0,3	1,7		Potok
2015	11	2	12	46	37,1	45,86	15,23	1	14	0,4	0,7	čutili	Šmarješke Toplice
2015	11	3	8	50	54	45,86	15,51	6	67	0,4	2,1	IV	Vrhovska vas
2015	11	3	8	54	24,9	45,87	15,53	5	9	0,1	0,5	III	Gorenja Pirošica
2015	11	3	21	17	27,9	45,87	15,53	5	17	0,1	0,6	111	Gorenja Pirošica
2015	11	4	5	21	54,3	45,86	15,55	6	41	0,3	1,7	III	Stojanski Vrh
2015	11	4	5	22	58,8	45,86	15,53	7	67	0,4	2,2	IV	Vinji Vrh
2015	11	4	5	53	5,1	45,87	15,55	5	20	0,3	1,1	zvok	Brvi
2015	11	4	6	21	16	45,86	15,54	5	26	0,3	1,3	Ш	Stojanski Vrh
2015	11	4	20	4	50,9	46,15	15,05	8	18	0,3	1,0	III-IV	Trbovlje
2015	11	5	9	47	22	45,86	15,54	5	31	0,4	1,2	III	Poštena vas
2015	11	5	17	35	2,5	45,87	15,53	6	19	0,2	0,7	III	Poštena vas
2015	11	6	8	48	17,2	45,93	14,37	6	5	0,1	0,6	Ш	Borovnica

	datum		čas (UTC)			z. šir.	z. dolž.	h		RMS		l _{max}	/ . · ·
leto	mesec	dan	h	m	s	°N	°E	km	nst	S	M _{LV}	EMS 98	potresno obmocje
	date			time (UTC)		lat	lon	h	not	RMS	м	I _{max}	onicontrol area
year	month	day	h	min	S	°N	°E	km	nsi	S		EMS 98	epicentral alea
2015	11	7	3	48	51,7	45,86	15,54	6	36	0,3	1,2	Ш	Stojanski Vrh
2015	11	7	19	52	10,3	45,87	15,53	6	19	0,3	0,8	Ш	Poštena vas
2015	11	8	3	47	58,9	45,98	15,62	5	36	0,4	1,2	III-IV	Sromlje
2015	11	8	19	49	18,6	46,48	16,18	8	21	0,3	1,6	III-IV	Cerovec Stanka Vraza
2015	11	9	0	16	47,5	45,86	15,53	5	4	0	<0.1	zvok	Poštena vas
2015	11	13	14	3	37,9	45,86	15,54	5	23	0,3	1,0	III	Stojanski Vrh
2015	11	13	15	26	6,8	45,86	15,54	5	34	0,3	1,4	zvok	Poštena vas
2015	11	17	17	27	13,2	45,86	15,52	7	58	0,3	1,9	IV	Vrhovska vas
2015	11	18	4	21	20,5	45,64	14,23	18	31	0,3	1,5		Zagorje
2015	11	18	17	40	8,6	45,87	15,53	5	19	0,1	0,7	Ш	Bušeča vas
2015	11	20	5	14	47,8	45,69	15,61	10	48	0,4	2,7	III-IV	Miladini, Hrvaška
2015	11	22	17	56	6,9	45,50	14,35	13	31	0,5	1,5		Fabci
2015	11	24	8	16	14,2	45,87	15,52	6	49	0,3	1,7	III-IV	Bušeča vas
2015	11	24	19	4	6,3	45,87	15,52	8	71	0,5	2,5	IV	Bušeča vas
2015	11	24	19	21	17,1	45,87	15,54	6	12	0,2	0,5	III	Gorenja Pirošica
2015	11	24	21	35	34,3	45,86	15,54	6	27	0,3	1,0	III-IV	Stojanski Vrh
2015	11	27	12	25	14,9	45,87	15,54	6	15	0,2	1,0	čutili	Gorenja Pirošica
2015	11	29	10	52	52,4	45,83	15,54	4	29	0,4	1,4	III	Kravljak, Hrvaška
2015	11	29	21	47	57,6	45,82	15,55	4	10	0,2	0,7	III	Kravljak, Hrvaška
2015	12	2	0	29	8,3	45,92	15,20	10	48	0,5	1,7	Ш	Čužnja vas
2015	12	4	9	58	50,3	46,33	13,69	9	27	0,3	1,5	III-IV	Soča

	datum		čas (UTC)		z. šir.	z. dolž.	h	mat	RMS		l _{max}	unturna akuna Xin	
leto	mesec	dan	h	m	s	°N	°E	km	nst	S	∣ WI _{LV}	EMS 98	potresno obmocje
	date			time (UTC)			lon	h	not	RMS	B.A.	I _{max}	
year	month	day	h	min	s	°N	°E	km	nst	S		EMS 98	epicentrai area
2015	12	6	18	30	42	45,90	15,21	7	24	0,4	0,7	III-IV	Velika Strmica
2015	12	6	21	13	56,8	45,86	15,18	5	15	0,3	0,4	III	Gorenje Grčevja
2015	12	11	15	58	15,1	45,75	14,86	9	67	0,5	2,4	IV	Seč
2015	12	15	5	6	18	46,30	13,67	9	79	0,3	2,2	III-IV	Lepena
2015	12	17	7	30	46,6	45,87	15,53	5	13	0,2	1,1	III	Gorenja Pirošica
2015	12	18	15	18	55,5	45,90	14,40	14	72	0,6	2,7	III-IV	Niževec
2015	12	29	9	44	54,8	45,48	14,29	9	42	0,5	1,8		Rupa, meja Hrvaška-Slovenija
2015	12	30	4	2	8,9	46,31	14,25	9	28	0,3	1,3	III-IV	Posavec

Za določitev osnovnih parametrov potresov, navedenih v preglednici 1, smo uporabili analize potresov, zapisanih na potresnih opazovalnicah državne mreže v Sloveniji (ARSO, 2015–2016), Avstriji (ZAMG, 2015–2016), na Hrvaškem (GEOF-PMF, 2015–2016), v Italiji (OGS, 2015) in na Madžarskem (Tóth in drugi, 2016). Žariščni čas (čas nastanka potresa), koordinati nadžarišča in žariščno globino smo določili iz časa prihodov vzdolžnega (P) in prečnega (S) valovanja na potresno opazovalnico. Potrese smo locirali s programom HYPOCENTER (Lienert in drugi, 1988; Lienert, 1994). Uporabili smo povprečni hitrostni model za ozemlje Slovenije, določen iz tridimenzionalnega modela za prostorsko valovanje (Michelini in drugi, 1998) in modela za površinsko valovanje (Živčić in drugi, 2000). Potresom, ki smo jim lahko določili le koordinati nadžarišča, smo za žariščno globino privzeli sedem kilometrov (Poljak in drugi, 2000). Lokalno magnitudo MLV potresov smo določili iz največje hitrosti navpične komponente nihanja tal na slovenskih opazovalnicah in oddaljenosti nadžarišča do potresne opazovalnice. V preglednici 1 je navedena povprečna vrednost MLV za opazovalnice v Sloveniji. Največja intenziteta (Imax), ki jo je potres dosegel na ozemlju Slovenije, je ocenjena po evropski potresni lestvici (EMS-98).

Prebivalci Slovenije so čutili še 2 zelo šibka potresna sunka, ki pa sta bila zabeležena le na eni opazovalnici in jima zato nismo mogli določiti osnovnih parametrov (žariščni čas, koordinati nadžarišča itn.). Navedena sta v preglednici 2.

V preglednici 3 so navedeni trije bolj oddaljeni (regionalni) potresi, ki so jih čutili tudi v Sloveniji. Konec januarja se je zatreslo v Italiji na območju Karnijskih Alp. Po zbranih podatkih so potres v Sloveniji precej močno čutili prebivalci Volarij, zelo rahlo pa posamezniki v visokih nadstropjih v Ljubljani, ki so bili ob tem času budni. Posamezni prebivalci Lucije so čutili potres, ki se je 18. avgusta zgodil pri Bellunu v Italiji. Prav tako so posamezniki v Piranu čutili potres, ki se je 18. septembra zgodil v Jadranskem morju, 30 km zahodno od Umaga.

Preglednica 2: Potresa, ki so ju čutili posamezni prebivalci nadžariščnega območja, nismo pa mogli oceniti njunih parametrov

Table 2: Earthquakes, felt by observers in Slovenia for which the parameters could not be estimated.

	datum		čas ((UTC)		l _{max}	potresno območje
leto	mesec	dan	h	min	NA	EMS-98	
date			time (UTC)		INI _{LV}	I _{max}	
year	month	day	h	min		EMS-98	epicentral area
2015	4	27	2	16	1	III	okolica Adlešičev
2015	10	6	22	57	<0.1	II	okolica Krškega

Preglednica 3: Bližnji (regionalni) potres, ki so ga čutili prebivalci Slovenije leta 2014 **Table 3:** Regional earthquake felt by the inhabitants of Slovenia in 2014.

alotum	čas (UTC)	intenziteta	potresno območje		
datum	h:min	EMS-98			
data	time (UTC)	intensity	epicentral area		
date	h.min	EMS-98			
30. 1. 2015	. 1. 2015 0.45 III-IV		Italija, Gemona del Friuli		
18. 8. 2015	20.10	III	Italija, Gemona del Friuli		
18. 9. 2015	17.53	II	pod morskim dnom, zahodno od Umaga		

Podatki o nekaterih močnejših potresih, ki so jih čutili prebivalci Slovenije

Leta 2015 so prebivalci v Sloveniji čutili vsaj 116 potresov, 113 lokalnih in tri regionalne. Nadžarišča potresov so prikazana na sliki 4. Velikost kroga označuje lokalno magnitudo, barva pa največjo doseženo intenziteto potresa v Sloveniji.

V nadaljevanju so opisani trije potresi, ki so dosegli učinke vsaj IV–V EMS-98. En potres je dosegel intenziteto VII EMS-98, eden intenziteto V EMS-98, eden pa IV–V EMS-98. Za vsakega izmed teh potresov je prikazana karta intenzitete po naseljih (slike 5–7) z vrisanim instrumentalno določenim nadžariščem. Intenziteta potresa v posameznem naselju je ocenjena na podlagi vprašalnikov o učinkih potresa ter terenskih ogledov poškodb. Vprašalnike po potresu pošiljamo prostovoljnim poročevalcem ali pa jih občani sami izpolnijo na spletni strani ARSO (http://www.arso.gov.si/potresi/vprašalnik) in evropske seizmološke organizacije EMSC (http://www.emsc-csem.org). Na sliki 8 so prikazana vsa naselja, od koder smo dobili podatke, da so ljudje čutili učinke katerega izmed teh 116 potresov. Barva in oznaka na sliki opredeljujeta največjo intenziteto, doseženo v posameznem naselju leta 2015. V nadaljevanju so vse navedene magnitude lokalne (M_{LV}).

Slika 4: Nadžarišča potresov, ki so jih leta 2015 čutili prebivalci Slovenije. Barva simbola ponazarja največjo doseženo intenziteto v Sloveniji, njegova velikost pa vrednost lokalne magnitude M_{LV}. **Figure 4**: Epicentres of earthquakes felt in Slovenia in 2015. The size of symbols represents local magnitude, while the colour represents maximum intensity in Slovenia.

13. februar 2015 ob 1.19 in 10.14 po UTC (slika 5). Ob 1.19 po UTC je posamezne prebivalce Trbovelj, Zagorja ob Savi, Ravenske vasi in Kisovca zbudil šibek potres z magnitudo 1,5 in največjimi učinki IV EMS-98. Dopoldne (ob 11.14 po lokalnem času) je sledil zmernejši sunek z magnitudo 2,4. Oba potresa sta nastala pri Trbovljah na globini 10 km. Dopoldanski potres je v Trbovljah, Ravenski vasi in Ojstrem dosegel učinke IV–V EMS-98. Prebivalci so se prestrašili, čutili so močno tresenje pohištva in celotne stavbe. Prejeli smo tudi podatek o lasasti razpoki v ometu na enem objektu. Učinke IV EMS-98 smo ocenili v naseljih Čolnišče, Zagorje ob Savi, Potoška vas, Prapreče, Izlake in Klek. Najbolj oddaljen kraj, kjer so potres po podatkih poročevalcev še zaznali, je bilo 22 km oddaljeno Mozirje.

Slika 5: Intenziteta potresa magnitude 2,4 pri Trbovljah 13. februarja 2015 ob 10.14 po UTC v posameznih naseljih

Figure 5: Intensity of earthquake near Trbovlje (M_{LV} =2,4) on 13 February 2015 at 10:14 UTC in individual settlements.

Slika 6: Intenziteta potresa magnitude 3,9 pri Bovcu 29. avgusta 2015 ob 18.47 po UTC v posameznih naseljih

Figure 6: Intensity of earthquake near Bovec (M_{LV} =3,9) on 29 August 2015 at 18:47 UTC in individual settlements.

29. avgust 2015 ob 18.47 po UTC (slika 6). Drugi najmočnejši potres leta 2015 v Sloveniji je imel magnitudo 3,9. Nadžarišče potresa je bilo v bližini Bovca, globina žarišča pa je bila 7 km. Ocenili smo, da so učinki potresa dosegli V EMS-98 v Volarjah, Soči in Lepeni. Tam so ljudje zaznali močno tresenje tal, žvenketanje steklovine, nihala so odprta okna in vrata, nihali so predmeti na stenah, prevračali so se nestabilni predmeti. V Žagi so opazili prelivanje vode v akvariju. Na ožjem nadžariščnem območju se je veliko ljudi prestrašilo in zbežalo na prosto. Manjše poškodbe so opazili na objektih v prej omenjenih krajih z največjo zabeleženo intenziteto, poleg teh pa še v Brodu, Drežnici in Kobaridu. Nastale so lasaste razpoke ali pa se povečale obstoječe, ponekod so odpadli manjši kosi ometa. V okolici Soče in Lepene so opazili tudi učinke potresa na naravno okolje. S hribov se je valilo kamenje. Mnogo ljudi je omenilo, da je bilo potres čutiti kot kratkotrajno navpično nihanje, in da so slišali hrumenje. Potres so čutili celo v Jesenicah na Dolenjskem, ki so od nadžarišča oddaljene 170 km in v 161 km oddaljenem Mariboru. Iz tujine smo dobili podatke o učinkih potresa v Italiji (Videm (Udine), Tržič (Monfalcone), Trbiž (Tarvisio)) in Avstriji (Beljak (Villach), Celovec (Klagenfurt)).

1. november 2015 ob 7.52 po UTC (slika 7). Najmočnejši potres v Sloveniji leta 2015 je imel nadžarišče na severni strani Gorjancev. Kljub zmerni magnitudi (4,2) je potres zaradi plitvega žarišča (6 km) povzročil tudi gmotno škodo. Največje poškodbe (učinki VII EMS-98) so nastale v neposredni bližini nadža-

Slika 7: Intenziteta potresa magnitude 4,2 na Gorjancih 1. novembra 2015 ob 7.52 po UTC v posameznih naseljih (podatke za Hrvaško je posredoval Ivica Sović, za Avstrijo pa Rita Meurers). *Figure 7*: Intensity of earthquake on Gorjanci Mountains (M_{Lv} =4,2) on 1 November 2015 at 7:52 UTC in individual settlements (foreign data were provided by Ivica Sović for Croatia, and Rita Meurers for Austria).

rišča, v naseljih Stojanski Vrh in Vinji Vrh. Znatne poškodbe so bile tudi v naseljih Dobrava ob Krki (VI–VII EMS-98), Bušeča vas (VI EMS-98) in Hrastje pri Cerkljah (VI EMS-98). Posamezne zmerne nekonstrukcijske poškodbe so se pojavile tudi v naseljih Globočice, Krška vas, Cerklje ob Krki, Poštena vas, Vrhovska vas in Pristava ob Krki, kjer smo ocenili učinke V–VI EMS-98. Manjše poškodbe na posameznih zgradbah in drugi učinki stopnje V EMS-98 so nastali v številnih do 15 km oddaljenih naseljih, učinke IV EMS-98 pa smo zabeležili še približno 45 km od nadžarišča. Potres so čutili skoraj po vsej Sloveniji, najbolj oddaljeno poročilo je prišlo iz Bovca (163 km). Poškodbe na posameznih stavbah je potres povzročil tudi na hrvaški strani Gorjancev (Žumberačka gora). Največja ocena intenzitete na Hrvaškem je V EMS-98, nekaj posameznih vprašalnikov pa je prišlo tudi iz Bosne, Italije in Avstrije. Potres je podrobneje opisan v prispevkih Šket Motnikar in drugi (2016) ter Čarman in drugi (2016).

Sklepne misli

Leta 2015 se je v Sloveniji ali njeni bližnji okolici zgodilo 2876 potresov. 22 potresov je imelo lokalno magnitudo med 2,0 in 2,9, dva pa večjo ali enako 3,0. Večina potresov (98 %) je imela lokalno magnitudo manjšo od 1,7. Vsi potresi na območju Slovenije in bližnje okolice so imeli žarišče do globine 24 km.

Slika 8: Največja intenziteta potresa izmed vseh, ki so se zgodili leta 2015, ocenjena v posameznih naseljih *Figure 8*: Overall map of the maximum intensity of all earthquakes in 2015 felt by the inhabitants of Slovenia in individual settlements.

Slika 9: Porazdelitev največje intenzitete (EMS-98) potresov v Sloveniji leta 2015 *Figure 9*: Distribution of earthquakes in Slovenia in 2015 with respect to maximum EMS-98 intensity.

V Sloveniji so leta 2015 prebivalci čutili vsaj 116 potresov (sliki 2 in 6). En potres je dosegel intenziteto VII EMS-98, eden V EMS-98, eden IV–V EMS-98, 14 potresov intenziteto IV EMS-98, 27 potresov III–IV EMS-98, 58 potresov III EMS-98, trije potresi pa intenziteto II EMS-98. Za preostale potrese (11) nam opazovalci niso posredovali dovolj informacij o učinkih, zato jim ni bilo mogoče določiti intenzitete po evropski potresni lestvici. Intenziteta je v tem primeru ocenjena samo opisno, in sicer z oznako čutili (6 potresov), oziroma zvok (5 potresov), če tresenja niso čutili, ampak so le slišali bobnenje (slika 9).

Makroseizmični podatki za potrese bi bili zelo pomanjkljivi ali celo nedostopni, če nam ne bi pomagali številni prostovoljni poročevalci (po trenutnih podatkih jih 3162 izpolnjuje papirne vprašalnike, 1374 pa spletne vprašalnike), za kar se jim najlepše zahvaljujemo. Prostovoljnim opazovalcem smo leta 2015 poslali 7411 makroseizmičnih vprašalnikov za 30 potresov (4360 papirnih in 3051 elektronskih vprašalnikov). Poročevalci so izpolnili 65 odstotkov poslanih papirnih vprašalnikov. Deleža vrnjenih spletnih vprašalnikov ne poznamo, saj na spletnih vprašalnikih osebni podatki niso obvezni. Skupaj (zaprošenih ali poslanih na lastno pobudo) smo prejeli 5484 izpolnjenih spletnih vprašalnikov, med katerimi je bilo:

- 4054 poročil, da so zaznali potres;
- 1325 poročil, da niso zaznali potresa;
- 95 prebivalcev je čutilo nekaj drugega (rudniški dogodek, promet, veter itn.);

- 10 izpolnjenih vprašalnikov nima navedene lokacije oziroma naselja, zato jih pri ocenjevanju potresnih učinkov nismo mogli upoštevati.

Tudi leta 2015 smo pri zbiranju in izmenjavi podatkov sodelovali s seizmologi iz sosednjih držav. Zahvaljujemo se jim za poslane oziroma na spletu objavljene makroseizmične podatke.

Viri in literatura

ARSO, 2015–2016. Preliminarni tedenski seizmološki bilteni za 2015. Arhiv Agencije RS za okolje, Ljubljana.

ARSO, 2016. Letni seizmološki bilteni, 1994–2014. Arhiv Agencije RS za okolje, Ljubljana.

- Čarman, M., Živčić, M. 2016. Potres 1. novembra 2015 na Gorjancih in popotresi. Potresi v letu 2015. Agencija RS za okolje, Ljubljana.
- Grünthal, G. (ur.), 1998. European Macroseismic Scale 1998 (EMS-98). Conseil de l'Europe, Cahiers du Centre Européen de Géodynamique et de Séismologie, Volume 15, Luxembourg.
- GEOF-PMF, 2015–2016. Data reports (online). Geofizički odsjek Prirodoslovno-Matematičnog Fakulteta, Zagreb, Hrvaška. Spletni naslov: http://www.isc.ac.uk/cgi-bin/collect?Days=&yyyy=Year&mm=Mon& Reporter=ZAG (uporabljeno 4. 4. 2016).
- Lienert, B. R., Berg, E., Frazer, L. N., 1988. HYPOCENTER: An earthquake location method using centered, scaled, and adaptively least squares. Bull. Seism. Soc. Am., 76, 771–783.
- Lienert, B. R., 1994. HYPOCENTER 3.2 A Computer Program for Locating Earthquakes Locally, Regionally and Globally. Hawaii Institute of Geophysics & Planetology, Honolulu, 70 p.
- Michelini, A., Živčić, M., Suhadolc, P., 1998. Simultaneous inversion for velocity structure and hypocenters in Slovenia. Journal of Seismology, 2 (3), 257–265.
- OGS (Oservatorio Geofisco Sperimentale), 2015. Bolletino della Rete Sismometrica del Friuli Venezia Giulia. OGS, Centro ricerche sismologiche, Udine, computer file. Spletni naslov: http://www.crs.inogs.it/ bollettino/RSFVG/2015/RSFVG-2015.it.html.
- Poljak, M., Živčić, M., Zupančič, P., 2000. The Seismotectonic Characteristics of Slovenia. Pure appl. Geophys., vol1. 57, 37-55.

RGU (Republiška geodetska uprava), 1995. Centroidi naselij (geografske koordinate), računalniški seznam.

- Šket Motnikar, B., Čarman, M., Godec, M., Zupančič, P., Cecić, I., 2016. Potres 1. novembra 2015 na Gorjancih. Ujma, 30.
- Tóth, L., Mónus, P., Kiszely, M., 2016. Hungarian Earthquake Bulletin 2015. GeoRisk, Budapest. Spletni naslov: http://www.georisk.hu/Bulletin/HEB_2015.pdf.
- Wessel, P., Smith, W. H. F., 1991. Free software helps map and display data. Eos, Trans. Amer. Un., Vol. 72 (441), 445–446.
- Wessel, P., Smith, W. H. F., 1998. New, improved version of the Generic Mapping Tools released. EOS Trans. AGU, Vol. 79, 579.
- ZAMG, 2015–2016. Preliminary bulletin of regional and teleseismic events recorded with ZAMG-stations in Austria. Zentralanstalt für Meteorologie und Geodynamik, Wien.
- Živčić, M., Bondár, I., Panza, G. F., 2000. Upper Crustal Velocity Structure in Slovenia from Rayleigh Wave Dispersion. Pure Appl. Geophys., Vol. 157, 131–146.

Izidor Tasič, Marko Mali, Luka Pančur, Peter Sinčič, Igor Pfundner, Bojan Uran, Jože Prosen

Delovanje državne mreže potresnih opazovalnic v letu 2015 Operation of Seismic Network of Slovenia in 2015

Povzetek

Abstract

Podani so rezultati analize delovanja Državne mreže potresnih opazovalnic (DMPO) v letu 2015. Strnjeno so povzeti vsi pomembnejši dogodki in posodobitve, ki so vplivali na delovanje DMPO in predstavljeni glavni parametri, ki opisujejo zanesljivost njenega delovanja. Podajamo število prekinitev komunikacije s posamezno potresno opazovalnico (izpad) glede na njihovo trajanje. Za najdaljši izpad na posamezni potresni opazovalnice smo opisali tudi njihov vzrok. Podajamo tudi časovne intervale, znotraj katerih ni delovalo po več potresnih opazovalnic hkrati ter razloge za omenjeno nedelovanje. Na osnovi rezultatov analize redno poteka tudi razvoj in izvedba posodobitev, ki prispevajo k boljšemu in zanesljivejšemu delovanju DMPO. The results of analysis for operation of Seismic Network of the Republic of Slovenia (SNRS) in 2015 are presented in this article. The main upgrades and events that have influenced the operating quality of SNRS are also presented, along with parameters describing its reliability. The number and duration of out-of-operation periods (OOOP) for all seismic stations were evaluated. The analysis of causes of the longest OOOP for particular seismic station was made. Time intervals, when more seismic stations were out of service simultaneously, are identified. Based on the results of the analysis, several improvements have been made constantly, contributing to better and more reliable operation of SNRS.

Uvod

Državno mrežo potresnih opazovalnic (DMPO) sestavlja 26 sodobno opremljenih digitalnih opazovalnic (slika 1). Vsaka potresna opazovalnica je opremljena z zajemalno enoto (tipa Quanterra Q730 ali Quanterra Q330HRS) in sodobnim širokopasovnim seizmometrom. Na nekaterih opazovalnicah smo z dodatnim pospeškometrom (slika 1) povečali dinamično območje in s tem omogočili beleženje večjih amplitud nihanj tal pri močnejših potresih. Poleg seizmološke merilne opreme se na opazovalnicah nahaja še vrsta druge podporne opreme, ki jo lahko v grobem razdelimo v štiri sklope: oprema za zagotavljanje neprekinjene oskrbe z električno energijo, komunikacijska oprema, oprema za dodaten nadzor delovanja zajemalnih enot ter oprema za nadzor okoljskih parametrov in delovanja GSM modemov. Glavna naloga Sektorja za potresna opazovanja (sektor deluje v sklopu Urada za seizmologijo in geologijo) je neprestano spremljanje delovanja celotne opreme na DMPO in zagotavljanje optimalne kakovosti seizmoloških podatkov ter v največjem možnem obsegu preprečevanje njihove izgube. V ta namen na DMPO neprestano izvajamo različne analize, na osnovi katerih izboljšujemo njeno delovanje.

Vsi posegi na DMPO ter rezultati obsežne analize vseh pomembnih parametrov, ki vplivajo na kakovost delovanja DMPO, so podani v internem poročilu Sektorja za potresna opazovanja (SPO, 2015). Le to obravnava naslednje parametre, ki opisujejo kakovost delovanja DMPO:

- Število izpadov komunikacije posamezne potresne opazovalnice glede na trajanje izpada. Za daljše izpade (več kot 2 uri), ki niso bili posledica napake na komunikacijah, podajamo tudi njihove vzroke.
- Skupno trajanje izpadov posamezne potresne opazovalnice glede na časovni interval ter skupno trajanje izpadov posamezne potresne opazovalnice v določenem mesecu. Rezultati za posamezno opazovalnico so podani v obliki tabel in grafov.
- · Podroben opis izpadov, ki so povzročili izgubo podatkov.

- Število avtomatskih nastavitev mirovne lege seizmometra (za opazovalnice opremljene s tipom seizmometra, ki to funkcijo omogoča).
- Število avtomatskih ponovnih zagonov (reset) GSM modemov (opazovalnice: KNDS, JAVS, GCIS in ZAVS).
- Analiza nivoja celotnega seizmičnega nemira (predstavlja kombinacijo naravnih in umetnih seizmičnih izvorov) na posamezni potresni opazovalnici.
- · Časovni potek mirovne lege in napajalne napetosti na posamezni potresni opazovalnici.
- · Časovni potek temperature ob seizmometru.
- Analiza vdorov vode v jaške potresnih opazovalnic. Podajamo število vdorov vode in datume omenjenih dogodkov.

V tem prispevku podajamo le pomembnejše točke iz internega poročila (SPO, 2015). Najpomembnejše posodobitve, ki smo jih v letu 2015 izvedli na DMPO, pa so naslednje:

- Menjava zajemalnih enot tipa Q730 z novejšimi tipa Q330HRS. Menjavo smo izvedli na potresnih opazovalnicah: BOJS, CRES, GORS, JAVS, KOGS, KNDS, LJU, MOZS, SKDS, VISS in VNDS.
- Posodobitev napajalnih sistemov (Mali in drugi, 2008). Celotna DMPO je bila v letu 2015 opremljena z napajalnim sistemom, ki nudi več kot 24 urno avtonomijo (24–48 ur). V letu 2015 smo omenjene sisteme le vzdrževali in kontrolirali. Na nekaj potresnih opazovalnicah smo zamenjali akumulatorje, akumulatorske polnilce in akumulatorske zaščite.
- Namestitev enot ArduinoUno (ang.: 'microcontroller board') na vse potresne opazovalnice, ki so opremljene z GSM modemi; namen je kontrola delovanja GSM modema (Mali in drugi, 2013). Namestitev enot ArduinoUno na potresne opazovalnice, kjer v jaške zaradi različnih vzrokov vdira voda; namen enote je detekcija vdora vode in posledično pravočasno ukrepanje (Mali, 2014).
- Na potresne opazovalnice MOZS, KOGS, LEGS in CRNS smo zaradi pogostih vdorov vode namestili sistem za avtomatsko črpanje vode, ki se aktivira takoj, ko voda doseže nivo nekaj centimetrov. Sistem avtomatsko izčrpa vodo in ostaja v stanju pripravljenosti.
- Nadgradnja zajemalnega sistema s senzorji tipa Guralp CMG-3T in CMG-3ESPC. S tem smo dosegli večjo frekvenčno območje zajemanja seizmičnih podatkov ter izboljšali njihovo kakovost. Prav tako seizmometri tipa CMG-3T oziroma CMG-3ESPC omogočajo daljinsko kontrolo in nastavljanje mirovne lege seizmometra, kar nam v praksi prihrani marsikateri terenski poseg. V letu 2015 smo zamenjali tip seizmometra na opazovalnici GBRS (prej 30 sekundni CMG-40T, sedaj 120 sekundni CMG-3ESPC).
- Menjava tipa komunikacije. Na celotni DMPO smo v letu 2015 zamenjali tip komunikacije ADSL s tipom SHDSL. Slednji uporablja naprednejšo komunikacijsko tehnologijo in bolj kakovostno strojno opremo. S komunikacijskega vidika ostajajo kritične le še opazovalnice, ki uporabljajo GSM modeme (delno smo težave rešili z namestitvijo sistema za njihov avtomatski ponovni zagon).

Delovanje DMPO v letu 2015

V letu 2015 je bila celotna DMPO opremljena z dodatnimi zunanjimi pomnilniškimi enotami, ki jih imenujemo JetBox. S tem smo rešili problem izgube podatkov v primeru izpada komunikacij, daljšega od dveh ur (Tasič in drugi, 2010). Do trajne izgube seizmičnih podatkov lahko pride še zaradi daljše prekinitve oskrbe potresne opazovalnice z električno energijo (zaradi nadgraditve napajalnih sistemov mora biti le-ta daljša od 24 ur) ali zaradi okvare seizmološke merilne opreme. V letu 2015 so bile vse štiri potresne opazovalnice, kjer komunikacija poteka preko GSM modema, opremljene s sistemom za avtomatski ponovni zagon (Mali in drugi, 2013). GSM

Slika 1: Državna mreža potresnih opazovalnic. Prikazana je razporeditev različnih tipov seizmometrov, pospeškometrov in zajemalnih enot po posameznih potresnih opazovalnicah.

Figure 1: Seismic network of the Republic of Slovenia (the seismometer, accelerometer and digitizer types and their locations)

Slika 2: Pregled delovanja DMPO v letu 2015. Izpadi so označeni s črno barvo. Ločljivost slike omogoča, da so vidni le izpadi, daljši od treh ur.

Figure 2: An overview of out-of-operation periods for seismic network of Slovenia in the year 2015. The resolution allows us to distinguish only out-of operation periods longer than three hours.

Preglednica 1: Skupni podatki o številu izpadov in njihovem trajanju ter številu samodejnih nastavitev mirovne lege za DMPO v letu 2015.

Table 1: An overview of the out-of-operation periods (OOOP) for particular seismic station and the number of mass recentering events in 2015.

oznaka opazovalnice	število vseh izpadov	skupno trajanje vseh izpadov	število izpadov daljših od 2h	število avtomatskih nastavitev mirovne lege
station code	number of OOOP	total duration of OOOP	number of OOOP > 2h	number of mass recentering events
BOJS	56	9h 25m	1	0
CADS	236	1d 9h 46m	3	0
CEY	180	2d 22h 55m	3	1
CRES	1657	12d 13h 56m	11	55
CRNS	137	30d 12h 21	5	61
DOBS	241	6d 0h 47m	7	1
GBAS	213	24d 0h 20m	16	0
GBRS	2661	25d 16h 42m	10	1
GCIS	968	2d 15h 45m	1	0
GOLS	640	7d 22h 15m	9	1
GORS	180	1d 6h 30m	4	1
GROS	2487	9d 22h 1m	3	0
JAVS	3656	15d 12h 28m	16	1
KNDS	742	18d 12h 14m	5	8
KOGS	113	14h 35m 6s	1	1
LEGS	3759	10d 18h 10m	7	/
LJU	190	1d 22h 57m	5	1
MOZS	171	6d 21h 14m	1	1
PDKS	117	2d 6h 59m	1	1
PERS	1593	7d 18h 26m	7	0
ROBS	169	2d 11h 2m	4	18
SKDS	194	22h 43m	1	4
VISS	82	12h 5m	1	2
VNDS	883	9d 3h 50m	8	1
VOJS	1802	7d 2h 18m	3	0
ZAVS	869	2d 12h 55m	104	/
skupaj	23996	213 dni in 7 ur	237	156

Preglednica 2. Pregled najdaljšega izpada za posamezno potresno opazovalnico DMPO in razlogi zanj

Table 2. An overview and causes for the longest out-of-operation periods for particular seismic station.

oznaka opazovalnice	nastop najdaljšega izpada	trajanje najdaljšega izpada	vzrok najdaljšega izpada			
station code	date/time of the longest OOOP	duration of the longest OOOP	cause for the longest OOOP			
BOJS	21. 11. / 14.49	3h 19m	izpad na komunikacijah			
CADS	2. 8. / 22.45	9h 56m	izpad na komunikacijah			
CEY	14. 4. / 10.46	1d 22h 41m	izpad na komunikacijah			
CRES	5. 9. / 13.51	3d 1h 18m	izpad na komunikacijah			
CRNS	1. 1. / 00.00	26d 9h 03m	pretrgani električni in tel. vodi zaradi plazu.			
DOBS	23. 2. / 21.55	2d 9h 02m	izpad na komunikacijah			
GBAS	8. 10. / 09.25	10d 22h 2m	izpad na komunikacijah			
GBRS	16. 8. / 12.01	16d 20h 10m	Udar strele. Poškodovanih je bilo več sklopov opreme.			
GCIS	21. 11. / 14.48	3h 19m	izpad na komunikacijah			
GOLS	5. 9. / 13.51	3d 1h 25m	izpad na komunikacijah			
GORS	4. 11. / 00.04	4h 24m	izpad na komunikacijah			
GROS	23. 1. / 17.55	3d 17h 03m	izpad na komunikacijah			
JAVS	24. 2. 00.10	23h 59m	izpad na komunikacijah			
KNDS	16. 10. / 16.45	5d 18h 45m	Težave z GSM komunikacijo			
KOGS	8. 10. / 23.10	2h 28m	izpad na komunikacijah			
LEGS	20. 10. / 19.21	1d 13h 00m	izpad na komunikacijah			
LJU	11. 5. / 19.58	12h 05m	izpad na komunikacijah			
MOZS	28. 10. / 06.47	6d 10h 20m	izpad na komunikacijah			
PDKS	22. 9. / 09.35	1d 22h 50m	Napaka pri menjavi modema.			
PERS	5. 4. / 15.34	1d 13h 58m	izpad na komunikacijah			
ROBS	21. 6. / 03.34	1d 8h 09m	izpad na komunikacijah			
SKDS	11. 6. / 06.50	2h 0m	izpad na komunikacijah			
VISS	21. 11. / 14.48	3h 19m	izpad na komunikacijah			
VNDS	15. 8. / 13.44	5d 19h 11m	Okvara zajemalne enote Q730 zaradi udara strele.			
VOJS	25. 7. / 22.01	3d 10h 43m	Izpad napajanja zaradi udara strele.			
ZAVS	21. 11. / 14.48	3h 19m	izpad na komunikacijah			
modemi so se namreč v preteklosti izkazali za zelo nezanesljive; pogosto so predstavljali vzrok za prekinitev komunikacije, ki smo jo lahko ponovno omogočili le tako, da smo na sami lokaciji fizično resetirali GSM modem (izklop/vklop). V letu 2015 je bilo 20 potresnih opazovalnic opremljenih z nadzornim sistemom (Mali, 2014). Sistem omogoča nadzor temperature ob seizmometru in v obeh jaških preverja potencialni vdor vode ter v primeru prekoračitve mejnih vrednosti obvesti dežurnega strokovnjaka.

Na sliki 2 podajamo pregled delovanja DMPO v letu 2015, kjer črna barva predstavlja nedelovanje oziroma izpad potresne opazovalnice. Pregled vseh izpadov ter opis najdaljših izpadov za posamezno potresno opazovalnico sta podana v Preglednicah 1 in 2. Potrebno se je zavedati, da večina daljših izpadov, ki so posledica izpada na komunikacijskih poteh, ne predstavlja več izgube podatkov, ampak le zmanjšano možnost analize morebitnega seizmičnega dogodka v realnem času.

Zaključek

Predstavili smo najpomembnejše posodobitve, ki smo jih v letu 2015 izvedli na DMPO in glavne rezultate analize delovanja DMPO v letu 2015. Ugotovili smo, da se izpadi (prekinitve v komunikaciji s posamezno potresno opazovalnico) pojavljajo neprestano. Medtem, ko je vzrok krajših izpadov praviloma manjša napaka na komunikacijah, pa so vzroki daljših izpadov raznovrstni. V grobem jih lahko delimo v tri skupine. V prvi skupini so problemi z dobavo električne energije. V drugo skupino sodijo izpadi, ki so povezani s komunikacijsko potjo. V tretjo skupino pa uvrščamo okvare na seizmološki opremi (okvare na seizmometrih in zajemalnih enotah). S podpornimi sistemi, ki jih neprestano razvijamo in dopolnjujemo, ter z rednimi posodobitvami in testiranji seizmološke merilne opreme zmanjšujemo število in dolžino izpadov zaradi vseh naštetih razlogov. Največjo pozornost seveda namenjamo preprečevanju okvar na seizmološki merilni opremi.

Slika 3: Skupno trajanje izpadov več potresnih opazovalnic hkrati (leto 2015). *Figure 3*: The total duration of OOOP's that occurred at several seismic stations simultaneously (year 2015).

Preglednica 3: Število izpadov (interval v minutah) glede na število sočasno izpadlih potresnih opazovalnic DMPO v letu 2015

Table 3: A number of out-of-operation periods (intervals in minutes) in 2015 that occurred at several sei-smic stations simultaneously.

število opaz./	dolžina trajanja izpadov / length of downtime												
no. of stations	0–5 min	5–15 min	15–30 min	30–45 min	45–60 min	60–120 min	> 120 min						
2	5224	895	177	70	45	99	85						
3	1525	198	21	9	10	11	9						
4	263	23	3	3	5	4	7						
5	66	3	1	0	1	0	0						
6	12	1	1	1	0	0	0						
7	5	0	0	0	0	0	0						
8	2	0	0	0	0	0	0						
9	2	0	0	0	0	0	0						
10	1	0	0	0	0	0	0						
11	4	0	0	0	0	0	0						
12	1	0	0	0	0	0	0						
13	7	0	0	0	0	0	0						
14	3	0	0	0	0	0	0						
15	1	0	0	0	0	0	0						
16	1	0	0	0	0	0	0						
17	5	0	0	0	0	0	0						
18	3	0	0	0	0	0	0						
19	1	1	0	0	0	0	0						
20	4	0	0	0	0	0	1						
21	1	0	0	0	0	0	0						
22	5	1	0	0	0	0	0						
23	2	3	0	0	0	0	0						
24	1	0	0	0	0	0	0						
25	9	1	1	0	0	0	0						
26	7	3	1	2	0	0	0						

Zaradi vse pogostejšega vdiranja vode v jaške potresnih opazovalnic in s tem povezanim okvaram opreme smo v letu 2015 na potresne opazovalnice MOZS, KOGS, LEGS in CRNS namestili sistem za avtomatsko črpanje vode, ki se aktivira takoj, ko voda doseže nivo nekaj centimetrov.

Podali smo tudi analizo izpadov več potresnih opazovalnic hkrati. Posebno pozornost smo namenili predvsem tako imenovanim kritičnim izpadom, pri katerih več kot 75 % potresnih opazovalnic oziroma več kot 20 potresnih opazovalnic izpade za več kot 5 minut. Ugotovili smo, da je bilo v letu 2015 tovrstnih izpadov 12.

Podani rezultati so nam v veliko pomoč pri nadaljnjem delu. Na osnovi rezultatov vsakoletno izluščimo najpogostejše napake, ki povzročijo izpad oziroma so vzrok za slabšo kvaliteto zajetih seizmičnih signalov. S pomočjo teh spoznanj neprestano izboljšujemo opremo in postopke na mreži potresnih opazovalnic in tako izboljšujemo njeno delovanje in preprečujemo škodo.

Literatura

- Mali, M., 2014, Nadzorni sistem za kontrolo nivoja vode in stabilnosti temperature, Potresi v letu 2013, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Mali, M., Tasič, I., Pančur, L., 2013, Nadgradnja kontrole modemske komunikacije Arduino Uno, Potresi v Ietu 2012, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Mali, M., Tasič. I., 2011, Vpliv temperaturnih sprememb na delovanje dolgoperiodnih seizmometrov, Potresi v letu 2010, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Mali, M., Tasič, I., Pančur, L., 2008. Vpliv brezprekinitvenega napajanja na delovanje potresne opazovalnice. Potresi v letu 2007, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Tasič. I., Pančur L., Pfundner, I., Mali, M., 2010, Povečanje lokalnega pomnilnika za zajemalne enote Q730, Potresi v letu 2009, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Tasič. I., Mali, M., Pančur L., 2011, Temperaturna stabilnost potresne opazovalnice, Potresi v letu 2010, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- SPO, 2015, Državna mreža potresnih opazovalnic, delovanje v letu 2015, interno poročilo, Ljubljana.

Jurij Pahor

Učinkovitost pridobivanja podatkov iz državne mreže potresnih opazovalnic v letu 2015 Seismic Data Acquisition Efficiency for Seismic Network of the Republic of Slovenia in 2015

Povzetek

Izguba podatkov iz šestindvajsetih opazovalnic Državne mreže potresnih opazovalnic je v letu 2015 znašala 0,9 % za podatkovne nize s frekvenco vzorčenja 200 vzorcev v sekundi (HH) ter 0,8 % za podatkovne nize s frekvenco vzorčenja 20 vzorcev v sekundi (BH). Delovanje večine opazovalnic je bilo zelo stabilno, večji izpad podatkov smo zabeležili na opazovalnicah Črni Vrh (CRNS) ter Gornja Briga (GBRS).

Abstract

The seismic network of the Republic of Slovenia consists of twenty six seismic stations. The data loss in 2015 was 0.9 % for 200 sps data streams (HH) and 0.8 % for 20 sps data streams (BH). Station Črni Vrh (CRNS) experienced a major data loss in January 2015 as a consequence of a landslide (August 2014) interrupting the power and communication cables. Major data loss was also detected at station GBRS, which was struck by lightning in August 2015.

Uvod

V poročilu o učinkovitosti pridobivanja podatkov so obravnavane opazovalnice Državne mreže potresnih opazovalnic (Sinčič in sod., 2016). Povzetek količine zbranih podatkov je narejen na osnovi wfdisc tabele arhivske podatkovne baze sistema Antelope (Boulder Real Time Technologies, 2016) za podatkovne nize s frekvenco vzorčenja 200 vzorcev v sekundi (200/s, HH) in 20 vzorcev v sekundi (20/s, BH). Izguba podatkov za posamezno opazovalnico in za celotno mrežo skupaj je podana kot odstotek in je definirana z razliko med pričakovano količino podatkov ter pridobljeno količino podatkov (Pahor in sod., 2007).

Izguba podatkov v letu 2015

V poročilu je zajetih šestindvajset potresnih opazovalnic Državne mreže potresnih opazovalnic (DMPO). Delovanje mreže je bilo stabilno, večjo izgubo seizmičnih podatkov smo zabeležili na opazovalnicah Črni Vrh (CRNS) ter Gornja Briga (GBRS) (tabela 1, slika 1). Iz prispevka, ki natančneje obravnava delovanje DMPO opazovalnic v letu 2015 (Tasič in sod., 2016) lahko povzamemo pomembnejše razloge za izgubo podatkov. Opazovalnica na Črnem Vrhu je ponovno začela delovati 27. januarja, po tem, ko je v avgustu leta 2014 zaradi plazu ostala brez električne in komunikacijske povezave. Opazovalnica na Gornji Brigi zaradi poškodb od udara strele ni delovala v drugi polovici avgusta.

Pri naštetih izpadih je bilo prekinjeno električno napajanje, zato tudi ni delovalo zajemanje podatkov v modulih JetBox na lokacijah opazovalnic. Izguba podatkovnih nizov z vzorčenjem 200/s znaša 0,9 %, pri nizih z vzorčenjem 20/s pa 0,8 %. **Preglednica 1:** Izguba podatkov za tri komponente HH in BH podatkovnih nizov po opazovalnicah, izražena v odstotku pričakovanega časa delovanja, za leto 2015. Pri senzorjih v vrtinah so podatkovni nizi HH1 navedeni kot HHE, HH2 pa kot HHN.

Table 1: Data loss represented as percentage of expected operation time for three-channel HH and BH data streams for each seismic station in 2015. Borehole sensors are oriented randomly, however the channels HH1 are represented by HHE and HH2 by HHN.

%	HHE	HHN	HHZ	BHE	BHN	BHZ
BOJS	0,0	0,0	0,0	0,0	0,0	0,0
CADS	0,0	0,0	0,0	0,0	0,0	0,0
CEY	0,6	0,6	0,6	0,6	0,6	0,2
CRES	0,0	0,0	0,0	0,0	0,0	0,0
CRNS	8,2	8,2	8,2	8,0	8,0	7,4
DOBS	0,0	0,0	0,0	0,0	0,0	0,0
GBAS	0,0	0,0	0,0	0,0	0,0	0,0
GBRS	4,8	4,8	4,8	4,8	4,8	4,8
GCIS	0,0	0,0	0,0	0,0	0,0	0,0
GOLS	0,3	0,3	0,3	0,3	0,3	0,3
GORS	0,0	0,0	0,0	0,0	0,0	0,0
GROS	0,0	0,0	0,0	0,0	0,0	0,0
JAVS	0,2	0,2	0,2	0,2	0,2	0,2
KNDS	3,4	3,4	3,4	3,4	3,4	3,4
KOGS	0,0	0,0	0,0	0,0	0,0	0,0
LEGS	0,0	0,0	0,0	0,0	0,0	0,0
LJU	0,2	0,2	0,2	0,2	0,2	0,2
MOZS	1,7	1,7	1,7	1,7	1,7	1,7
PDKS	0,0	0,0	0,0	0,0	0,0	0,0
PERS	0,0	0,0	0,0	0,0	0,0	0,0
ROBS	0,6	0,6	0,6	0,6	0,6	0,6
SKDS	0,0	0,0	0,0	0,0	0,0	0,0
VISS	0,0	0,0	0,0	0,0	0,0	0,0
VNDS	1,6	1,6	1,6	1,6	1,6	1,6
VOJS	0,5	0,5	0,5	0,5	0,5	0,5
ZALS	0,0	0,0	0,0	0,0	0,0	0,0
mreža / network	0,9	0,9	0,9	0,9	0,9	0,8

Slika 1: Izguba HH in BH podatkovnih nizov (povprečje treh komponent) po opazovalnicah v letu 2015. Največjo izgubo smo zabeležili na opazovalnici Črni Vrh.

Figure 1: Data loss of HH and BH data streams (three components average) for each seismic station in 2015. The largest data loss on station CRNS was caused by power and communications interruption due to a landslide in August 2014.

Slika 2: Izguba HH in BH podatkovnih nizov po mesecih v letu 2015. Izguba podatkov je povečana v januarju zaradi nedelovanja opazovalnice CRNS, v avgustu pa zaradi nedelovanja opazovalnice GBRS. *Figure 2*: Monthly data loss of HH and BH data streams in 2015. Major data loss in January is a consequence of non-operativeness of the station CRNS, and non-operativeness of the station GBRS in August.

Zaključek

V letu 2015 smo zabeležili izpad 0,9 % podatkov z vzorčenjem 200/s s stalnih potresnih opazovalnic, kar štejemo za stabilno delovanje. Glavni vzrok izgube podatkov so bile naravne nesreče (plaz in udar strele), ki so prekinile dobavo električne energije oziroma poškodovale opremo na opazovalnici. Največjo izgubo smo zabeležili na opazovalnicah Črni Vrh in Gornja Briga.

Slika 3: Razpoložljivost podatkov iz HHZ podatkovnih nizov za leto 2015. Časovna skala prikazuje dan v letu. *Figure 3*: Data availability of HHZ data streams for permanent seismic stations in 2015. Time scale represents a day of the year.

Literatura

- Boulder Real Time Technologies, inc. (online), 2016 (citirano 23. 10. 2016). Antelope Real Time System. Dostopno na naslovu: http://www.brtt.com/
- Pahor, J., Živčić, M., 2007. Učinkovitost zbiranja podatkov iz potresnih opazovalnic v letu 2005. Potresi v letu 2005, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Sinčič, P., Tasič, I., Živčić, M., 2016. Potresne opazovalnice v Sloveniji v letu 2015. Potresi v letu 2015, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Tasič, I., Mali, M., Pančur, L., Sinčič, P., Pfundner, I., Uran, B., Prosen, J., 2016. Delovanje državne mreže potresnih opazovalnic v letu 2015. Potresi v letu 2015, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.

Potres 1. novembra 2015 na Gorjancih in popotresi The Earthquake of 1 November 2015 at Gorjanci Mountains and its Aftershocks

Povzetek

Potres magnitude $M_{LV} = 4,2$ je 1. novembra 2015 ob 8.52 po lokalnem času stresel Gorjance, sledili pa so mu številni popotresi. Za boljšo opredelitev potresnih parametrov smo slovenski in hrvaški seizmologi v nadžariščem območju postavili štiri prenosne potresne opazovalnice in s pomočjo pridobljenih seizmičnih zapisov locirali 862 potresov. Prostorska porazdelitev popotresov in žariščni mehanizmi treh močnejših potresov kažejo, da so se potresi najverjetneje zgodili na globini med 6 in 7 kilometrov, pri narivanju v smeri proti severu vzdolž preloma dinarske smeri SZ-JV.

Abstract

An earthquake with local magnitude 4,2 on 1 November 2015 at 8:52 CET, that had shaken Gorjanci Mountains, was followed by a series of aftershocks. Data from the instruments installed by Slovenian and Croatian seismologists in the epicentral area have allowed better evaluation of the earthquake parameters. Spatial distribution of aftershocks as well as focal mechanisms of three strongest shocks indicate focal depths 6 to 7 km, thrusting in N direction along fault striking dinaric NW-SE direction.

Prostorska in časovna porazdelitev potresov

Najmočnejši potres leta 2015 se je zgodil na območju Gorjancev 1. novembra 2015 ob 7. uri 52 minut in 32 sekund po univerzalnem koordiniranem času (UTC), ki od lokalnega, srednjeevropskega časa zaostaja za eno uro. Potresu smo opredelili koordinate nadžarišča, in sicer 45,85° SZŠ in 15,54° VZD, kar je približno 3 kilometre jugovzhodno od Cerkelj ob Krki. Žarišče potresa je bilo 6 kilometrov globoko. Lokalno magnitudo potresa, $M_{LV} = 4,2$, smo določili iz največje hitrosti navpične komponente nihanja tal na slovenskih opazovalnicah. Učinki potresa so opisani v članku Šket Motnikar in drugi (2016).

Takoj po glavnem potresu so opazovalnice državne mreže potresnih opazovalnic (DMPO) zabeležile številne popotrese. Prebivalci so mnoge od njih čutili, zato smo za boljšo opredelitev potresnih parametrov še isti dan začasno postavili dve prenosni potresni opazovalnici. Opazovalnica na Stojanskem Vrhu, z oznako STVP, je začela delovati ob 12. uri in 30 minut po UTC, medtem ko je imela opazovalnica v Župeči vasi, z oznako ZPVE, prva dva dneva previsoko nastavljen prag proženja in je zato instrument po novih nastavitvah začel potrese beležiti šele 3. novembra 2015 ob 8. uri in 50 minut po UTC. Ker je bil glavni potres le kilometer od državne meje in so ga čutili tudi prebivalci Republike Hrvaške, je Hrvaška seizmološka služba na svoje obmejno ozemlje postavila dve začasni potresni opazovalnici, in sicer v Stojdragi (STJD) in v Željeznem Žumberačkem (ZLZM). Prvi potres je opazovalnica v Stojdragi zabeležila 1. novembra 2015 ob 16. uri in 55 minut po UTC, potresna opazovalnica v Željeznem Žumberačkem pa isti dan ob 22. uri in 1 minuti po UTC. Lokacije vseh štirih začasno postavljenih potresnih opazovalnic so prikazane na sliki 1. Podatki o obdobju delovanja začasnih potresnih opazovalnic in številu zabeleženih potresov so zbrani v preglednici 1. Opazovalnici na Stojanskem Vrhu (STVP) in v Župeči vasi (ZPVE) sta delovali do 14. januarja 2016. V času delovanja je prva zabeležila 867, druga pa 26 potresov z žariščem na Gorjancih. Iz Stojdrage so bili instrumenti odstranjeni 27. novembra 2015 in so na obravnavanem območju zabeležil 576 potresov, medtem ko je opazovalnica v Željeznem Žumberačkem delovala do 25. novembra 2015 in zabeležila 206 potresov.

Preglednica 1: Začasne potresne opazovalnice, postavljene po potresu 1. novembra 2015 v nadžariščnem območju potresov na Gorjancih, ter število zabeleženih potresov na posamezni potresni opazovalnici. **Table 1:** Temporary seismic stations installed after earthquake on 1 November 2015 in epicentral area at Gorjanci Mountains and the number of recorded earthquakes on each seismic station.

opazovalnica	oznaka	čas delovanja	število zabeleženih in lociranih potresov			
seismic station	code	operational time	number of recorded and located events			
Stojanski Vrh	STVP	1. 11. 2015–14. 1. 2016	867			
Župeča vas	ZPVE	3. 11. 2015–14. 1. 2016	26			
Stojdraga, R Hrvaška	STJD	1. 11. 2015–27. 11. 2015	576			
Željezno Žumberačko, R Hrvaška	ZLZM	1. 11. 2015–25. 11. 2015	206			

Slika 1: Nadžarišča 862 potresov na Gorjancih, zabeleženih novembra in decembra 2015 (ARSO, 2016). Prikazane so lokacije najbližjih potresnih opazovalnic in žariščni mehanizmi najmočnejših potresov.

Figure 1: Epicentres of 862 earthquakes recorded in Gorjanci region in November and December 2015 (ARSO, 2016). Seismic stations and focal mechanisms of the three strongest earthquakes are also shown.

Zabeleženim potresom smo določili osnovne parametre s programom HYPOCENTER (Lienert in drugi, 1988; Lienert, 1994). Ta program na podlagi časov prihoda vzdolžnih oziroma longitudinalnih (P) in prečnih oziroma transverzalnih (S) potresnih valov, podatkov o hitrostih valovanja na različnih globinah (enodimenzionalni hitrostni model) in podatkov o lokacijah opazovalnic numerično reši kinematične enačbe in tako določi čas in kraj nastanka posameznega potresa. Lokalno magnitudo M_{LV} potresov smo določili iz največje hitrosti navpične komponente nihanja tal na slovenskih opazovalnicah in oddaljenosti nadžarišča do potresne opazovalnice. Točnost, ki jo navadno dosežemo, je nekaj kilometrov za lego žarišča, nekaj desetink sekunde za čas nastanka potresa in nekaj desetink za magnitudo.

Po redni obdelavi seizmoloških podatkov smo na območju 45,75–45,95° SZŠ in 15,30–15,65° VZD od 1. novembra do 31. decembra 2015 iz zapisov na opazovalnicah DMPO in zapisov prenosnih opazovalnic uspeli locirati 862 potresov (Agencija RS za okolje, 2016). Potresi in najbližje potresne opazovalnice so prikazane na sliki 1. Večina žarišč se nahaja na globini med 4 in 6 kilometrov. Opredelitev globine z redno analizo je manj zanesljiva, še posebej ko v neposredni bližini potresa nimamo opazovalnic. Tako smo pri redni analizi za žarišče glavnega potresa opredelili globino 10 km, z nadaljnjimi analizami s pomočjo zapisov popotresov, ki so bili zabeleženi v neposredni bližini na začasnih opazovalnicah, pa smo jo popravili na 6 kilometrov.

Slika 2 prikazuje prirast števila potresov po dnevih v času od 1. novembra 2015 do konca istega leta. Kar 14 % od 862 potresov se je zgodilo že prvi dan, t. j. v obdobju 16 ur po glavnem potresu, 51 % prvi teden in 84 % vseh potresov v mesecu novembru 2015. Ker je potresna dejavnost hitro pojemala, je bila izjemno pomembna hitra postavitev prenosnih potresnih opazovalnic po glavnem potresu. Na sliki 2 je označena tudi največja lokalna magnituda posameznega dne. Glavnemu potresu z magnitudo 4,2 je 1. novembra 2015 ob 8.08 UTC sledil najmočnejši popotres z magnitudo 2,9.

Lokalne magnitude potresnega niza

Histogram na sliki 3 prikazuje porazdelitev lokalne magnitude (MLV) popotresov. Petim od skupno 862 potresov nismo uspeli opredeliti lokalne magnitude. Med 857 potresi z opredeljeno magnitudo jih je le 30 imelo magnitudo vsaj 1,0, drugi popotresi pa so bili šibkejši. Vrednosti magnitude med 10. in 90. percentilom so v razponu med –0,9 in 0,4.

Slika 2: Časovna porazdelitev 862 lociranih potresov. Kumulativno število popotresov po dnevih (leva os) in največja lokalna magnituda dneva (desna os, rdeče pike).

Figure 2: Time distribution of 862 located earthquakes. Cumulative number of aftershocks by day (left axis) and maximum magnitude of an earthquake by day (right axis, red dots).

Figure 3: Distribution of local magnitude for 857 earthquakes at Gorjanci region in November and December 2015.

Žariščna globina potresov

Pri rutinski analizi potresov je bila globina žarišča večine (85 %) potresov ocenjena med 3,5 in 6,5 kilometrov (slika 4a).

Postavitev lokalne mreže začasnih potresnih opazovalnic nam omogoča boljšo opredelitev globine potresnega niza. Zapisi žarišču najbližjih opazovalnic so namreč odločilni za določanje globine žarišča, ki jo opredelimo iz časovne razlike prihodov vzdolžnega in prečnega potresnega valovanja na potresno opazovalnico. V primeru, da se opazovalnica nahaja skoraj nad žariščem, lahko celotno oddaljenost žarišča od opazovalnice pripišemo žariščni globini. Za tako opredeljevanje globine smo uporabili zapise opazovalnice STVP, postavljene v območju potresnega niza, in hitrost potovanja potresnega valovanja, ocenjeno iz tridimenzionalnega tomografskega modela hitrosti vzdolžnega valovanja v Sloveniji (Michelini in drugi, 1998).

Časovne razlike (ts-tp) med prihodoma vzdolžnega (P) in prečnega (S) valovanja na opazovalnico STVP so v zelo ozkem razponu (slika 4b). Če upoštevamo le časovne razlike med 10. in 90. percentilom, so te med 0,69 in 0,80 s. Ob upoštevanju hitrostnega modela in predpostavki, da sta vzdolžno in prečno valovanje potovala po isti poti, lahko iz odčitanih razlik vstopnih časov potrese umestimo na globino med 5,8 in 6,8 kilometrov. Te globine so v primerjavi z globinami, določenimi z rutinsko obdelavo parametrov potresov na sliki 4a, bolj strnjene in za 1-2 kilometra večje.

Žariščni mehanizmi najmočnejših potresov

Žariščne mehanizme smo v obravnavanem območju in času določili trem močnejšim potresom (Ložar Stopar in Živčić, 2016), in sicer najmočnejšemu potresu in dvema popotresoma. Iz odčitanih smeri prvih premikov ob vstopu vzdolžnega valovanja na potresno opazovalnico smo s programom Focmec (Snoke in drugi, 1984) določili položaj dveh možnih prelomnih ploskev. Poleg seizmičnih zapisov opazovalnic DMPO smo imeli na voljo tudi zapise bližnjih hrvaških, italijanskih in avstrijskih opazovalnic. Tako smo za najmočnejši potres lahko odčitali smer vstopa valovanja na zapisih 57 opazovalnic, za popotres 1. novembra 2015 ob 8.08 UTC na zapisih 36 opazovalnic in za popotres 24. novembra 2015 ob 19.04 UTC na zapisih 28 opazovalnic. Ostalim popotresom

Slika 4: a) Porazdelitev globine žarišča 862 potresov.

b) Porazdelitev časovne razlike (ts-tp) med prihodom prečnega (S) in vzdolžnega (P) valovanja za 815 potresov, zabeleženih na opazovalnici STVP (b).

Figure 4: a) Distribution of focal depth for 862 earthquakes.

b) Distribution of time difference (ts-tp) between the arrival of transversal (S) and longitudinal (P) seismic waves for 815 earthquakes recorded on seismic station STVP (b).

Preglednica 2: Parametri žariščnega mehanizma potresov v novembru 2015. Smer preloma (smer) je merjena od severa proti vzhodu, tako da je prelomna ploskev nagnjena v desno, naklon je merjen od vodoravne ravnine, premik je merjen v prelomni ploskvi od smeri preloma v smeri nasprotni urnemu kazalcu (Aki in Richards, 2002). P je os največje in T os najmanjše napetosti. N je število uporabljenih podatkov o smeri prvih premikov.

Table 2: Focal mechanism solution for earthquakes on November 2015. Strike is the azimuth of the horizontal direction taken so that the plane dips to the right, measured from the North through East (Aki's convention), dip of the fault is measured from the horizontal and rake is the angle of slip, measured in the plane of the fault from the strike direction to the slip vector in counter clockwise direction. P is maximum and T minimum pressure axis. N is number of P-wave first motion polarities used.

dotum	čas (UTC)	zem. širina	zem. dolž.	glob.		ravnina 1			ravnina 2			Р		т		Ν
uatum	hh:mm	°N	°E	km		smer	nakl.	prem.	smer	nakl.	prem.	smer	nakl.	smer	nakl.	
Jata	time (UTC)	lat.	long.	depth	IVILV	nod	nodal plane 1		nodal plane 2			Р		т		Ν
date	hh.mm	°N	°E	km		strike	dip	rake	strike	dip	rake	strike	dip	strike	dip	
1. 11. 2015	7.52	45,85	15,54	6	4,2	254	62	67	116	36	126	0	14	123	65	57
1. 11. 2015	8.08	45,87	15,52	9	2,9	271	51	77	111	41	106	10	5	127	79	36
24. 11. 2015	19.04	45,87	15,52	8	2,5	76	30	80	268	60	96	353	15	192	74	28

nismo uspeli nedvoumno opredeliti smeri prvega vstopa valovanja na zapisih zadostnega števila opazovalnic. Parametri žariščnih mehanizmov so zbrani v preglednici 2. Rešitve prelomnih ravnin so v stereografski projekciji na spodnjo poloblo predstavljene na sliki 1. Žariščni mehanizmi potresov kažejo na narivanje bodisi proti JZ s smerjo preloma SV-JZ, bodisi proti S s smerjo preloma SZ-JV.

Relokacija potresov

Z relativno metodo časovnih prehitkov oz. zaostankov pri določanju žarišč (Waldhauser in Ellsworth, 2000; Waldhauser, 2001) smo izboljšali lokacije potresov, izračunane z rutinskim postopkom. Metoda je uporabna za gručo potresov na prostorsko omejenem območju, ki je majhno v primerjavi z oddaljenostjo potresnih opazovalnic od žarišč potresov in na katerem so spremembe hitrosti majhne v primerjavi s spremembami hitrosti na poti potresnih valov. Osnovna ideja te metode je, da potresno valovanje, ki je nastalo na relativno majhnem območju, potuje do izbrane oddaljene opazovalnice po poteh zelo blizu skupaj, razen v neposredni bližini žarišč, in tako prepotujejo iste geološke strukture. Tako na večjem delu poti, razen v neposredni bližini žarišč, rutinski izračun z uporabo poenostavljenega hitrostnega modela Zemljine notranjosti prinese enako absolutno napako k času potovanja potresnega valovanja. Zaradi tega lahko časovno razliko (prehitek ali zaostanek) med potovanjem potresnega valovanja P in S dveh bližnjih potresov na izbrano opazovalnico z veliko gotovostjo pripišemo krajevnemu razmiku žarišč. Z zaporednim spreminjanjem lege žarišč minimiziramo vse prehitke oz. zaostanke med pari bližnjih potresov na vsaki opazovalnici posebej. S takšnim sočasnim relociranjem gruče potresov posredno upoštevamo hitrostne razlike v Zemljini notranjosti in posledično točneje določimo koordinate žarišč.

Na obravnavanem območju smo v preteklih letih zabeležili večje število šibkih in zmernih potresov. Pri relokaciji smo uporabili katalog potresov ARSO od leta 2004 do 2016. Upoštevali smo le odčitane vstopne čase za potrese, ki so jih zapisale opazovalnice, oddaljene od središča skupine potresov največ 50 km. V nadaljevanju smo parom bližnjih potresov poiskali vsaj 8 časovnih prehitkov oz. zaostankov ustreznih vstopnih časov. Tako je pri relokaciji sodelovalo 21 bližnjih opazovalnic s podatki 827 potresov. Prehitke oz. zaostanke vstopnih časov smo s programom HypoDD minimizirali in tako dobili izboljšane medseboj-ne lege potresov (slika 5). Potresi so se po relokaciji prostorsko strnili. Gruča potresov, ki se je zgodila novembra in decembra 2015, je razpotegnjena vzdolž smeri SZ-JV, globina potresov pa se sicer komaj zaznavno manjša v smeri proti SV. Precej verjetno je, da je tudi prelomna ploskev tako usmerjena in je ob njej prišlo do narivanja proti severu.

Zaključek

Potresu 1. novembra 2015 z lokalno magnitudo 4,2 na Gorjancih so sledili številni popotresi. Prostorska porazdelitev žarišč popotresnega niza 862 potresov kaže potresno dejavni del preloma na globini med 6 in 7 kilometrov. Prelomna ploskev ima najverjetneje dinarsko smer SZ-JV, ob njej pa je prišlo do narivanja v smeri proti severu.

Sliki 1 in 5 sta bili narejeni s programom GMT (Wessel in Smith, 1991; 1998).

Zahvale

Zapise opazovalnic seizmoloških mrež Hrvaške, Avstrije in Italije smo dobili v okviru sodelovanja v Centralni in vzhodno-evropski seizmološki raziskovalni mreži (CE3RN, 2016).

Slika 5: Nadžarišča 827 potresov na Gorjancih v letih 2004 - 2016 (a) po rutinskem lociranju vsakega posameznega dogodka s programom Hypocenter (Lienert, 1994), in (b) po sočasnem relociranju dogodkov z uporabo relativne metode časovnih prehitkov oz. zaostankov pri določanju lege žarišča. Barva krogca ponazarja žariščno globino.

Figure 5: Distribution of 827 at Gorjanci Mountains in years 2004-2016 (a) routinely located earthquakes using Hypocenter (Lienert, 1994), and (b) relocated earthquakes using Double-Difference Hypocenter determination algorithm. The colour of the symbols corresponds to the focal depth.

Viri in literatura

- Agencija RS za okolje, 2016. Baza podatkov za potrese na ozemlju Slovenije za obdobje 2004-2016. Arhiv ARSO, Ljubljana.
- Aki, K. in Richards, P. G., 2002. Quantitative seismology. University Sausalito Books, Sausalito CA, 700 str.
- CE3RN The Central and Eastern European Earthquake Research Network, 2016. http://www.ce3rn.eu/ (uporabljeno 10. 11. 2016)
- Lienert, B. R., Berg, E., Frazer, L. N., 1988. HYPOCENTER: An earthquake location method using centered, scaled, and adaptively least squares. Bull. Seism. Soc. Am., 76, 771–783.
- Lienert, B. R., 1994. HYPOCENTER 3.2 A computer program for locating earthquakes locally, regionally and globally. Hawaii Institute of the Geophysics and Planetology, Honolulu, 70 str.
- Ložar Stopar, M., Živčić, M., 2016. Žariščni mehanizmi nekaterih močnejših potresov v Sloveniji v letu 2015. V A. Gosar, ur.: Potresi v letu 2015. Agencija Republike Slovenije za okolje, Ljubljana, članek te publikacije.
- Michelini, A., Živčić, M., and Suhadolc, P., 1998. Simultaneous inversion for velocity structure and hypo--centers in Slovenia, Journal of Seismology, 2(3), 257-265.
- Snoke, J.A., Munsey, J.W., Teague, A.G., Bollinger, G. A., 1984. A program for focal mechanism determination by the combined use of polarity and SV-P amplitude ratio data. Earthquake Notes, 55, No. 3, 15 str.
- Šket Motnikar, B., Godec, M., Zupančič, P., Cecić, I., 2016. Učinki potresa 1. novembra 2015 na Gorjancih. V A. Gosar, ur.: Potresi v letu 2015. Agencija Republike Slovenije za okolje, Ljubljana, članek te publikacije.
- Waldhauser, F., Ellsworth, W. L., 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault. Bull. Seism. Soc. Am. 90, 1353-1368.

- Waldhauser, F., 2001. HypoDD A programe to compute double-difference hypocenter locations. U. S. Geol. Surv. Open File Rep. 01-113, 25 str.
- Wessel, P. in Smith, W.H.F., 1991. Free software helps map and display data, Eos, Trans. Amer. Un., Vol.72(441), str. 445-446.
- Wessel, P. in Smith, W.H.F., 1998. New, improved version of the Generic Mapping Tools released, EOS Trans. AGU, Vol. 79, str. 579

Učinki potresa 1. novembra 2015 na Gorjancih Effects of the earthquake on 1 November 2015 at Gorjanci mountains

Povzetek

Najmočnejši potres v Sloveniji leta 2015 je imel magnitudo 4,2 in je 1. novembra ob 8.52 po lokalnem času stresel Gorjance, čutili pa so ga skoraj po vsej Sloveniji. Na nekaterih stavbah so nastale široke in globoke razpoke v nosilnih zidovih, s streh so zdrsnili strešniki, poškodovani so bili mnogi dimniki. Na podlagi več kot 3700 poročil o učinkih potresa ter na podlagi našega ogleda nadžariščnega območja smo ocenili intenziteto po naseljih. Največja ocenjena intenziteta je bila VII EMS-98 in sicer na Stojanskem Vrhu in Vinjem Vrhu.

Abstract

The strongest earthquake in Slovenia in 2015 (magnitude 4.2) has shaken Gorjanci Mountains on 1 November at 8:52 CET and was felt in the better part of Slovenia. Some buildings suffered extensive damage (wide and deep cracks appeared in the walls, roof tiles slipped off, many chimneys were damaged). Intensities were estimated based on more than 3700 macroseismic questionnaires and field investigation of epicentre area. The maximum intensity VII EMS-98 was estimated at Stojanski Vrh and Vinji Vrh. By the end of 2015, at least 31 aftershocks were felt in the epicentral area.

Uvod

Potres z največjimi učinki v Sloveniji v zadnjem desetletju se je zgodil 1. novembra 2015 ob 8. uri in 52 minut po lokalnem času. Nadžarišče potresa je bilo na Gorjancih, približno 3 kilometre jugovzhodno od Cerkelj ob Krki, v globini 6 kilometrov (Čarman in drugi, 2016). Magnituda potresa je bila 4,2, največja ocenjena intenziteta potresa pa VII po Evropski potresni lestvici EMS-98 (Grünthal, 1998).

Vprašalniki o učinkih potresa

Intenziteto potresa v posameznem naselju ocenjujemo na podlagi učinkov. Podatke o učinkih potresa so nam posredovali številni prostovoljni poročevalci. Poslali smo jim 2396 vprašalnikov, in sicer 922 po elektronski pošti ter 1474 po navadni pošti. Vrnjenih smo dobili 1032 izpolnjenih vprašalnikov na papirju, kar je 70 odstotkov poslanih. Poleg tega so prebivalci samoiniciativno ali pa kot odgovor na naš poziv izpolnili še 2562 vprašalnikov na spletni strani http://www.arso.gov.si/potresi/vprašalnik/, prejeli pa smo tudi veliko telefonskih klicev (ARSO, 2016). Na sliki 1 je prikazan odziv prebivalcev, ki so čutili potres, in sicer število spletnih vprašalnikov po občinah ter normirano število vprašalnikov glede na število prebivalcev občine.

Prek spletne strani (http://www.emsc-csem.org) evropsko-sredozemske seizmološke organizacije EMSC smo dobili še 77 vprašalnikov o učinkih v Sloveniji in 42 odzivov z njihove mobilne aplikacije LastQuake. Takoj po potresu smo v treh dneh terenskega dela sodelavci Urada za seizmologijo in geologijo obiskali 23 naselij na nadžariščnem območju, kjer smo raziskovali učinke potresa in si ogledali poškodovane objekte.

Na prejetih vprašalnikih je 2699 oseb napisalo, da so potres čutili sami ali nekdo v njihovi neposredni okolici, 988 ljudi potresa ni zaznalo, 57 vprašalnikov pa zaradi neustreznosti (vožnja z avtom, neznana lokacija, tujina, neznan naslov) nismo upoštevali.

Prebivalci so zelo živo opisovali, kako so doživeli potres. Navajamo nekaj citatov iz vprašalnikov po naseljih (v oklepaju je navedena oddaljenost od nadžarišča):

Slika 1: Število spletnih vprašalnikov s pozitivnimi odgovori (čutili potres) po občinah: celotno število (levo) in normirano število na 10.000 prebivalcev (desno)

Figure 1: Number of web questionnaires by municipalities (felt): total number (left) and normalized to 10.000 inhabitants (right)

- · Gorenja Pirošica (2 km): »Zelo, zelo slab občutek, preplavi te grozen strah, srce začne močno utripati.«
- Črneča vas (7 km): »Bila sem dobra 2 m od vrat, pa nisem mogla priti do njih, da bi šla pod obok, tako se je treslo.«
- Brežice (8 km): »Ni bil potres, ki zaniha, hiša je drgetala, z zvoki rafalske strojnice. / Kot da bi tla šla dol

 mogoče učinek podoben štartu dvigala. / Je rukalo in ropotalo, kot bi šla po tirnicah z avtom.«
- Leskovec pri Krškem (10 km): »Začelo se je z rahlim zibanjem avta, kar pa se je zelo hitro stopnjevalo. Na koncu sem imel tak občutek, kot da sedim na podivjanem konju. Avto je bil v mirujočem stanju. / Kot da bi tla pod hišo vzvalovila. / Kar naenkrat je začelo vse »plavati«. Vsi v cerkvi smo bili zbegani, saj je iz stropa padal omet. Hitro smo začeli teči proti izhodnim vratom. Pri vratih smo se vsi rinili, saj je vse zgrabila panika, / Potres se je začel z majhno močjo, potem je pa kar pridobival na moči, treslo se je grozno, začel je odpadati omet iz sten in stropov. Čedalje bolj je pridobival na moči in bilo je resnično strašno, ko se moraš rešiti iz zaprtega prostora, kjer je s tabo še okrog 200 ljudi.«
- Zgornji Obrež, Artiče (10 km): »Občutek, da se vse premika, bilo je nekakšno bobnenje oz. hromenje kot da bi padale bombe in hotel sem zlesti iz postelje, vendar nisem mogel, kajti tudi nisem vedel, kaj se sploh dogaja, ker me je potres prebudil iz spanca.«
- · Globoko (13 km): »Pred sunkom je bilo slišati zvok kot stampedo goved.«
- Senovo (19 km): »Nikoli še nisem videla, da se blok dobesedno maje sem in tja... Zelo smo bili prestrašeni.«
- · Ljubljana (80 km): »Kar nekaj sekund so žvenketale medalje in pokali.«
- Maribor (80 km): »Ležala sem v postelji, ki se je tresla, občutek je bil, kot da bi ležala na pralnem stroju, ko centrifugira.«

Učinki potresa

Na podlagi vseh zbranih podatkov smo ocenili učinke potresa po Evropski potresni lestvici EMS-98 (Grünthal, 1998). Intenziteta za posamezna naselja je prikazana na sliki 2.

Slika 2: Intenziteta potresa 1. novembra 2015 po naseljih v Sloveniji (podatke za Hrvaško je posredoval lvica Sović, za Avstrijo pa Rita Meurers)

Figure 2: Intensity map for 1 November 2015 earthquake by Slovenian settlements (foreign data was forwarded by Ivica Sović for Croatia, and Rita Meurers for Austria).

Figure 3: A radiator was ripped off the wall in a new house at Vinji Vrh (Photo J. Kodrič).

Potres je na širšem nadžariščnem območju povzročil preplah in poškodbe na stavbah. Največjo intenziteto VII EMS-98 je potres dosegel na Stojanskem Vrhu in Vinjem Vrhu, kjer so na mnogih nosilnih zidovih nastale široke in globoke razpoke, s streh pa so odpadli strešniki, odlomili so se tudi dimniki. Stanovalci so poročali, da je omare prestavilo za 10 cm, s stene odtrgalo nosilec TV-zaslona ter dvignilo radiatorje z nosilcev (slika 3).

Poškodbe nekoliko manjšega obsega so nastale v naseljih Dobrava ob Krki (VI–VII EMS), Bušeča vas (VI EMS) in Hrastje pri Cerkljah (VI EMS). Ocenjujemo, da je v 41 slovenskih in petih hrvaških naseljih potres dosegel stopnjo V ali V–VI EMS-98, ki že lahko povzroči manjšo gmotno škodo. Prebivalci teh naselij so poleg poškodb na posameznih stavbah navedli močno tresenje, prestrašenost, znatno nihanje visečih predmetov, žvenket steklenine in porcelana, premikanje pohištva, štedilnikov na trdo gorivo in nestabilnih predmetov. V številnih zidanicah so se potopili pokrovi sodov za vino. Ob cesti na Izvir je v manjšem opuščenem kamnolomu nastal podor večje količine kamenja in skal (slika 4).

Največje poškodbe so nastale na območju do 10 km od nadžarišča (slika 5), manjše poškodbe pa so nastale v naseljih, oddaljenih do 35 km.

Učinke IV EMS-98 smo ocenili v krogu polmera približno 45 kilometrov od nadžarišča. Posamezna sporočila o zaznavanju potresa so prišla iz vse Slovenije, najbolj oddaljeno celo iz 163 kilometrov oddaljenega Bovca. Od 1. novembra do 31. decembra 2015 so prebivalci čutili še najmanj 31 popotresov.

Na Hrvaškem so potres 1. novembra čutili v približno 50 km širokem obmejnem pasu od Karlovca do Varaždina, pa tudi v Puli. Najmočneje so ga zaznali v okolici Žumberačke gore, kjer so bili učinki V EMS-98. V Bosni in Hercegovini so ga čutili v Prijedoru in Cazinu, v Italiji v Trstu, Gradežu in Červinjanu, v Avstriji pa v Gradcu.

Slika 4: Posledice potresa v naravi: podor kamenja pri naselju Izvir (foto M. Godec) Figure 4: Earthquake effects in nature: a rockfall near Izvir (Photo M. Godec).

Slika 5: Intenziteta potresa v naseljih na širšem nadžariščnem območju v Sloveniji. Imena so napisana pri naseljih, kjer so bili učinki potresa ocenjeni z intenziteto V–VI EMS-98 ali več.

Figure 5: Intensity in wider epicentral area. The names of the settlements with intensity V–VI EMS-98 or more are shown in the map.

Opis poškodb

Potresni sunek je na območju Gorjancev poleg preplaha povzročil tudi gmotno škodo. Zmerne konstrukcijske poškodbe in velike nekonstrukcijske poškodbe (3. stopnje po petstopenjski klasifikaciji poškodb v EMS) smo opazili na nekaterih starejših stavbah v naseljih Stojanski Vrh, Vinji Vrh, Dobrava ob Krki, Bušeča vas, Hrastje pri Cerkljah, Pristava ob Krki ter Vrhovska vas.

Največji obseg poškodb je nastal v vaseh Stojanski Vrh in Vinji Vrh (slike 6–11). Obseg poškodb je bil vsaj v enem primeru takšen, da bi bila nadaljnja uporaba objekta lahko nevarna oziroma, da bi bili prebivalci ogroženi. V vseh prostorih več kot 100 let stare kamnite hiše na Stojanskem Vrhu so nastale globoke in široke razpoke v nosilnih zidovih, odpadli so večji kosi ometa, močno je bil poškodovan strop nad kletjo, s strehe je zdrselo mnogo strešnikov, dimnik je bil poškodovan. Na še štirih starejših objektih Stojanskega vrha in na petih stavbah Vinjega Vrha (vse ranljivostnega razreda B po EMS) smo ugotovili poškodbe 3. kategorije po EMS (globoke in široke razpoke v nosilnih stenah in ometu, odpadli strešniki, odlomi, rotacije in porušitve dimnikov).

Manjše poškodbe (manjše razpoke, odpadli večji kosi ometa, zdrsi ali premaknjenost posameznih strešnikov) smo zasledili celo na posameznih novejših potresno odporno grajenih objektih (ranljivostnega razreda D po EMS).

V Dobravi ob Krki so bile na dveh objektih globoke in široke razpoke nosilnih zidov, s treh pa so odpadli strešniki. Strešniki so zdrsnili na še enem objektu, na katerem je razpokal tudi dimnik. Na novejši hiši je nastala razpoka na stiku armirano-betonske plošče in plavajočega poda (slika 12).

V Bušeči vasi je največ poškodb nastalo v cerkvi: široke in globoke razpoke v stenah, stropu in zvoniku, odpadli strešniki ter večji kosi ometa (slika 13). Streha je bila poškodovana še na treh stavbah, porušen dimnik na stari osnovni šoli je padel na parkiran avto. Na pokopališču je na več mestih počil zid, nekateri

Slika 6: Široke in globoke razpoke na stikih nosilnih zidov in stropa na Stojanskem Vrhu (foto M. Godec) *Figure 6*: Large and extensive cracks in the joints of walls and ceiling at Stojanski Vrh (photo M. Godec)

Slika 7: Široke in globoke razpoke nosilnih zidov na Stojanskem Vrhu (foto M. Godec) *Figure 7*: Large and extensive cracks in bearing walls at Stojanski Vrh (photo M. Godec)

Slika 8: Premaknjeni strešniki na Stojanskem Vrhu (foto M. Godec) *Figure 8*: Slipped roof tiles at Stojanski vrh (photo M. Godec)

Slika 9: Zarotiran dimnik v Vinjem Vrhu (foto M. Godec) *Figure 9*: Rotated chimney at Vinji Vrh (photo M. Godec)

Slika 10: Široke in globoke razpoke nosilnega zidu na Vinjem Vrhu (foto M. Godec) *Figure 10*: Large and extensive cracks in bearing wall at Vinji Vrh (photo M. Godec)

Slika 11: Odpadli večji kosi ometa na stropu v Vinjem Vrhu (foto M. Godec). *Figure* 11: Large pieces of plaster falling off the ceiling in Vinji Vrh (Photo M. Godec).

Slika 12: Razpoka na stiku armirano-betonske plošče in plavajočega poda na novejši hiši v Dobravi ob Krki (foto M. Godec)

Figure 12: A crack in the joint of reinforced concrete slab and floating floor in a new house in Dobrava ob Krki (Photo M. Godec).

nagrobniki so se prevrnili in plošče premaknile (slika 14). Zaradi 1. novembra, dneva spomina na mrtve, je bilo v cerkvi in na pokopališču veliko ljudi, ki so imeli težave z ravnotežjem.

Za Hrastje pri Cerkljah so bili značilni zdrsi strešnikov, kar smo opazili na petih stavbah. Na stari hiši se je odlomil dimnik in poškodoval streho (slika 15). Na nekaterih hišah so nastale lasaste razpoke.

Široke in globoke razpoke v zidovih smo opazili tudi na enem objektu v Vrhovski vasi in v Pristavi ob Krki. Manjše poškodbe na posameznih stavbah smo videli še v naseljih Krška vas, Cerklje ob Krki, Poštena vas, Boršt, Dolenja Pirošica, Izvir, Leskovec pri Krškem ter Kostanjevica na Krki.

Potresna nevarnost na Gorjancih

Po uradni karti potresne nevarnosti Slovenije za povratno dobo 475 let (Lapajne in drugi, 2011) se mora na območju nadžarišča tega potresa za projektiranje upoštevati projektni pospešek tal 0,225 g. Med potresom je bil najbližji akcelerograf nameščen v Jedrski elektrarni Krško, ki je od nadžarišča potresa oddaljena 9 km. Zabeležil je maksimalni pospešek tal 0,08 g (Prosen, 2016).

Za potrebe zaščite in reševanja uporabljamo karto potresne intenzitete za povratno dobo 475 let (Šket Motnikar in Zupančič, 2011), po kateri lahko za to območje pričakujemo potrese z učinki VIII EMS-98. Takšen potres se je pri Brežicah zgodil leta 1917 in je imel magnitudo 5,7 (Ribarič, 1982). S spletno aplikacijo PO-TROG za hiter odziv po potresu (Lutman in drugi, 2014) lahko ocenimo, kakšne učinke bi imel tako močan potres danes. Ob tem scenariju bi učinke stopnje V EMS-98 (tudi zanemarljive poškodbe na posameznih

Slika 13: Globoka razpoka na zunanji strani cerkve v Bušeči vasi (foto M. Godec) *Figure 13*: Deep crack in the outer wall of the church at Bušeča vas (photo M. Godec)

Slika 14: Premaknjena nagrobna plošča na pokopališču v Bušeči vasi (foto M. Godec) *Figure 14*: Displaced gravestone at the cemetery in Bušeča vas (Photo M. Godec).

Slika 15: Odlom dimnika na Hrastjah pri Cerkljah (foto I. Cecić) Figure 15: Partial collapse of chimney in Hrastje pri Cerkljah (Photo I. Cecić).

zelo ranljivih stavbah) pričakovali od Maribora na severu do Ogulina (Hrvaška) na jugu in od Grosuplja na zahodu do Ivanić Grada (Hrvaška) na vzhodu. Aplikacija temelji na Registru nepremičnin (GURS), zato lahko ocenjujemo le poškodbe stavb na območju Slovenije. Na podlagi modela predvidevamo, da bi bilo na najbolj prizadetem območju (na slovenski strani) 11 stavb tako hudo poškodovanih, da jih ne bi bilo mogoče sanirati. V teh stavbah živi 90 prebivalcev, ki bi po tem scenariju potrebovali stalno namestitev drugje. Poleg tega bi bilo treba poskrbeti za začasno namestitev 3685 prebivalcev iz 1729 objektov. Ti objekti bi imeli majhne do zmerne konstrukcijske poškodbe in bi jih bilo mogoče sanirati.

Sklepne misli

Potres na Gorjancih 1. novembra 2015 ob 8.52 je imel na ožjem nadžariščnem območju učinke VII EMS-98. Po potresu v Posočju leta 1998 je to največja ocenjena intenziteta v Sloveniji. Na posameznih hišah so nastale poškodbe 3. kategorije po EMS (globoke in široke razpoke v nosilnih stenah in ometu, odpadli strešniki, odlomi, rotacije in porušitve dimnikov), kar označuje zmerne konstrukcijske poškodbe in velike nekonstrukcijske poškodbe. Na območju s polmerom 15 km pa je nastalo veliko manjših poškodb; največ je bilo razpok v ometu in zidovih, zdrsov strešnikov in poškodb dimnikov.

Prostovoljci so nam poslali več kot 3700 poročil o učinkih potresa, kar je največje število poročil, ki smo jih kadarkoli zbrali po potresu.

Zahvala

Projekt POTROG je financiralo Ministrstvo za obrambo RS, Uprava RS za zaščito in reševanje. Podatke o učinkih potresa v tujini sta posredovala seizmologa Ivica Sović (za Hrvaško) in Rita Meurers (za Avstrijo), še

nekaj informacij o učinkih v sosednjih državah pa smo dobili na spletni strani EMSC. Zahvaljujemo se številnim prostovoljcem, ki so izpolnili vprašalnik o učinkih potresa.

Viri in literatura

- Agencija Republike Slovenije za okolje, 2016. Poročilo o terenskem ogledu po potresu 1. novembra 2015 na Gorjancih. Interno poročilo, makroseizmični arhiv ARSO, Ljubljana.
- Čarman, M., Živčić, M., Ložar-Stopar, M. 2016. Potres 1. novembra 2015 na Gorjancih in popotresi. Potresi v letu 2015. Agencija RS za okolje, Ljubljana.
- Geodetska uprava Republike Slovenije, Register nepremičnin, dostopno (14. 11. 2016) na www.e-prostor.gov.si/si/zbirke_prostorskih_podatkov/nepremicnine/register_nepremicnin/
- Grünthal, G. (ur.), 1998. European Macroseismic Scale 1998 (EMS-98). Conseil de l'Europe, Cahiers du Centre Européen de Géodynamique et de Séismologie, Volume 15, Luxembourg.
- Lapajne, J., Šket Motnikar, B., Zupančič, P., 2001. Nova karta potresne nevarnosti projektni pospešek tal namesto intenzitete. Gradbeni vestnik 50, 140–149.
- Lutman, M., Weiss, P., Klemenc, I., Zupančič, P., Šket Motnikar, B., Banovec, P., Cerk, M., 2014. POTROG – potresna ogroženost v Sloveniji za potrebe Civilne zaščite. Republika Slovenija, Ministrstvo za obrambo, Ljubljana. (www.sos112.si/slo/tdocs/naloga_99.pdf)

Prosen, T., 2016. Poročilo o delovanju akcelerografa NEK0 v obdobju 1. 1.–31. 12. 2015, ARSO, Ljubljana. Ribarič, V., 1982. Seizmičnost Slovenije. Katalog potresov (792 n.e. – 1981). Publikacije SZSRS 1-1, Ljubljana. Šket Motnikar, B., Zupančič, P., 2011. Karta potresne intenzitete Slovenije. Ujma, št. 25. Milka Ložar Stopar, Mladen Živčić

Žariščni mehanizmi nekaterih močnejših potresov v Sloveniji v letu 2015 Fault Plane Solutions of Selected Earthquakes in Slovenia in 2015

Povzetek

Močnejšim potresom, ki so se leta 2015 zgodili v Sloveniji, smo iz seizmogramov odčitali smeri prvih premikov ob vstopu vzdolžnega (longitudinalnega) valovanja. Pri petih potresih smo zbrali zadostno število podatkov za določitev žariščnega mehanizma. Lokalne magnitude (M_{LV}) obravnavanih potresov so bile v razponu od 2,5 do 4,2. Žariščni mehanizem teh potresov je nariv ali nariv z zmikom. Zbrali smo tudi rešitve parametrov žariščnih mehanizmov, ki so jih najmočnejšemu potresu 1. novembra 2015 določili v tujini.

Abstract

The first onsets of the arrivals of the longitudinal waves were picked on the seismograms of selected earthquakes in Slovenia in 2015. For 5 events with local magnitudes ranging from M_{LV} =2.5 to 4.2 enough data were available to determine fault plane solutions. Focal mechanisms are found to be mostly reverse or reverse oblique. Fault plane solutions of selected earthquakes were collected from foreign institutions for comparison.

Uvod

Z žariščnim mehanizmom opišemo izvor potresnega valovanja. Uporabljeni postopek temelji na določitvi smeri prvega premika vzdolžnega potresnega valovanja na lokaciji potresne opazovalnice. Smer premika odčitamo na navpični komponenti zapisa potresa kot zgostitev (kompresijo) ali razredčitev (dilatacijo). Metodo, ki smo jo uporabili smo natančneje opisali v publikacijah preteklih let (Ložar Stopar, Živčić, 2008 in 2011).

Rezultati

V tem prispevku podajamo rezultate žariščnega mehanizma petih potresov, ki so se zgodili leta 2015. Zanje smo zbrali zadostno število seizmogramov in uspeli odčitati smeri vstopov valovanja na navpični komponenti zapisa posamezne opazovalnice.

Število seizmogramov, na katerih je bila smer premika jasno določljiva, je bilo od potresa do potresa različno. Med izbranimi potresi je imel največjo magnitudo (M_{LV}=4,2) potres, ki se je zgodil 1. novembra ob 7.52 po UTC v bližini Brežic. Smer vstopnega valovanja pri tem potresu smo določili na seizmogramih sedeminpetdesetih opazovalnic. Najbolj oddaljena opazovalnica je bila od žarišča potresa oddaljena 540 km. Največ vstopov (sedemdeset) smo odčitali potresu z magnitudo 3,9 v Posočju. Potresu z magnitudo M_{LV}=2,7, ki se je zgodil 18. decembra pri Borovnici, smo odčitali najmanj, le šestindvajset vstopov, a smo mu še uspeli določiti žariščni mehanizem.

Parametri žariščnega mehanizma petih potresov so zbrani v preglednici 1, njihova geografska lega je prikazana na sliki 1. Rešitve prelomnih ravnin z relativno lego opazovalnic in odčitanimi smermi vstopov vzdolžnega valovanja so predstavljene v stereografski projekciji na spodnjo poloblo na sliki 2.

Pri določanju parametrov žariščnega mehanizma potresa smo na Uradu za seizmologijo in geologijo (ARSO) uporabili metodo, ki temelji na smeri prvih premikov vzdolžnega potresnega valovanja na lokacijah potresnih opazovalnic.

Slika 1: Lokacije petih močnejših potresov na ozemlju Slovenije v letu 2015 z njihovim žariščnim mehanizmom. Obarvani kvadranti so kompresijski, barva predstavlja žariščno globino, velikost pa vrednost lokalne magnitude M_{LV} **Figure 1**: Locations and fault plane solutions of five earthquakes with epicentres in Slovenia in 2015. Coloured quadrants are compressional, colour gives information on focal depth and size scales with local magnitude M_{LV}

Z metodo inverzije tenzorja potresnega navora so potresu 1. novembra ob 7.52 po UTC pri Brežicah določili parametre žariščnega mehanizma tudi ameriška geološka služba U.S. Geological Survey (USGS, 2015), ameriška univerza Saint Louis v ZDA (EAS SLU, 2015), Istituto Nazionale di Oceanografia e Geofisica Sperimentale v Trstu (INOGS, 2015) in Istituto Nazionale di Geofisica e Vulcanologia v Bologni (INGV, 2015) ter Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum v Potsdamu (GFZ, 2015). Njihovi parametri, zbrani v preglednici 2, so večinoma primerljivi z našo rešitvijo v preglednici 1.

Zahvala

Zapise potresov na opazovalnicah v Avstriji, v pokrajini Furlanija - Julijska krajina v Italiji in na Hrvaškem smo pridobili v okviru Mednarodnega sporazuma o izmenjavi seizmoloških podatkov v stvarnem času na področju Alpe-Jadran v okviru Srednje in vzhodno evropske mreže za raziskave potresov CE3RN (2016). Slike smo izdelali s programom GMT (Wessel in Smith, 1991, 1998). **Preglednica 1:** Parametri žariščnih mehanizmov obravnavanih potresov na ozemlju Slovenije v letu 2015. Smer je merjena od severa proti vzhodu, tako da je prelomna ploskev nagnjena v desno, naklon je merjen od vodoravne ravnine, premik je merjen v prelomni ploskvi od smeri preloma (Aki in Richards, 2002). P je os največje in T os najmanjše napetosti. Np je število uporabljenih podatkov o smeri prvih premikov. Nnp je število odčitkov neskladnih z rešitvijo. **Table 1:** Focal mechanism solutions of the selected earthquakes with epicentres in Slovenia in 2015. Strike is the azimuth of the horizontal direction taken so that the plane dips to the right, measured from the North through East (Aki's convention), dip of the fault is measured from the horizontal plane and rake is the angle of slip, measured in the plane of the fault from the strike direction to the slip vector. P is maximum and T is minimum pressure axis, respectively. Np is the number of P-wave first motion polarities used. Nnp is number of wrong P-wave first motion polarities.

	čas (UTC)	zem. širina	zem. dolž.	globina		ravnina 1			ravnina 2		Р		т		Np	Nnp	
datum	hh.mm	°N	°E	km		smer	naklon	premik	smer	naklon	premik	smer	naklon	smer	naklon	število vstopov	napačni vstopi
data	time (UTC)	lat.	long.	depth	IVI _{LV}	nodal 1				nodal 2		Р		т		Np	Nnp
date	hh.mm	°N	°E	km		strike	dip	rake	strike	dip	rake	azimuth	plunge	azimuth	plunge	polarities	wrong polarities
29. 8. 2015	18.47	46,32	13,61	7	3,9	61	65	79	266	27	112	159	19	310	68	70	0
1. 11. 2015	7.52	45,85	15,54	6	4,2	254	62	67	116	36	126	0	14	123	65	57	2
1. 11. 2015	8.08	45,87	15,52	9	2,9	271	51	77	111	41	106	10	5	127	79	36	1
24. 11. 2015	19.04	45,87	15,52	8	2,5	76	30	80	268	60	96	353	15	192	74	28	1
18. 12. 2015	15.18	45,90	14,40	14	2,7	61	54	37	307	61	138	5	4	271	49	26	0

Slika 2: Žariščni mehanizmi petih močnejših potresov na ozemlju Slovenije leta 2015. Kvadratki predstavljajo opazovalnice, ki so kot prvi premik tal zaradi potresa zabeležile dilatacijo, krogci pa opazovalnice, ki so zabeležile kompresijo. Označeni sta smeri največje (P) in najmanjše (T) napetosti. Podana je projekcija na spodnjo poloblo. **Figure 2**: Fault plane solutions of five earthquakes in Slovenia in 2015. Squares denote stations with dilatation as the first onset and circles denote stations with compression. P and T describe maximum and minimum stress axes, respectively. Lower hemisphere projection is applied.

Preglednica 2: Parametri žariščnega mehanizma za potres 1. novembra 2015 ob 7.52 UTC določenih z inverzijo tenzorja potresnega navora na USGS v ZDA (USGS, 2015) EAS SLU v ZDA (EAS SLU, 2015), na INGV v Bologni (INGV, 2015), na INOGS v Trstu (INOGS, 2015) in na GFZ v Potsdamu (GFZ, 2015) **Table 2:** Focal mechanisms parameters for earthquake on 1 November 2015 at 7:52 UTC, determined by inversion of seismic moment tensor at U.S. Geological Survey (USGS,2015), at EAS SLU (EAS SLU, 2015), at INGV (INGV, 2015), at INOGS (INOGS, 2015) and at GFZ (GFZ, 2015).

datum	čas (UTC)	outor	zem. širina	zem. dolž.	globina	globina		avnina	1	r	N		
uatum	hh.mm	avior	°N	°E	km		smer	naklon	premik	smer	naklon	premik	število opazov.
1-1-	time (UTC)		lat.	long.	depth	M _w	nodal plane 1			nodal plane 2			N
date	hh.mm	autnor	°N	°E	km		strike	dip	rake	strike	dip	rake	No. of stations
1. 11. 2015	7.52	INGV	45,86	15,50	11,5	4,27	111	28	113	266	64	78	13
1. 11. 2015	7.52	EAS SLU	45,94	15,58	10	4,3	295	57	123	65	45	50	40
1. 11. 2015	7.52	INOGS	45,8290	15,6425	6	4,3	106	30	102	273	61	83	10
1. 11. 2015	7.52	GFZ	45,94	15,57	10	4,3	282	64	97	87	27	77	48
1. 11. 2015	7.52	USGS	45,862	15,552	5	4,3	113	50	105	271	42	73	

Literatura

- EAS SLU_a, Saint Louis University, USA, 2015. http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20151101075235/index.html (uporabljeno 10. 10. 2016).
- GFZ, Deutsches GeoForschungsZentrum, Potsdam, 2015. http://geofon.gfz-potsdam.de/data/alerts/2015/gfz2015vkal/mt.txt (uporabljeno 10. 10. 2016).
- INGV, Istituto Nazionale di Geofisica e Vulcanologia, Bologna, 2015. http://autorcmt.bo.ingv.it/QRCMT-on-line/QRCMT15-on-line/E1511010752A.html (uporabljeno 10. 10. 2016).
- INOGS, Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Trieste, 2015. http://rts.crs.inogs.it/event/37066/detail.html (uporabljeno 10. 10. 2016).
- USGS, U.S. Geological Survey, 2015. http://earthquake.usgs.gov/earthquakes/eventpage/us20004166#general_summary (uporabljeno 10. 10. 2016).
- Ložar Stopar, M., Živčić, M., 2008. Žariščni mehanizmi nekaterih močnejših potresov v Sloveniji v letih 2006 in 2007. Potresi v letu 2007 (ur. R. Vidrih). Agencija Republike Slovenije za okolje, Ljubljana, 48–53.
- Ložar Stopar, M., Živčić, M., 2011. Žariščni mehanizmi nekaterih močnejših potresov v Sloveniji v letih 2008 in 2009. Potresi v letu 2010 (ur. A. Gosar). Agencija Republike Slovenije za okolje, Ljubljana, 71–75.
- The Central and Eastern European Earthquake Research Network CE3RN, 2016. http://www.ce3rn.eu/ (uporabljeno 10. 11. 2016)
- Wessel, P. in Smith, W.H.F., 1991. Free software helps map and display data, Eos, Trans. Amer. Un., Vol.72(441), str. 445-446.
- Wessel, P. in Smith, W.H.F., 1998. New, improved version of the Generic Mapping Tools released, EOS Trans. AGU, Vol. 79, str. 579.

Najmočnejši potresi po svetu leta 2015 World's Largest Earthquakes in 2015

Povzetek

Leta 2015 je bilo po svetu 58 potresov, ki so dosegli ali presegli navorno magnitudo (M_w) 6,5. Navorna magnituda enega potresa je bila večja ali enaka 8,0, osemnajst potresov je imelo magnitudo med 7,0 in 7,9. Vsaj 17 potresov je zahtevalo človeška življenja, skupaj vsaj 9635 žrtev. Najmočnejši (M_w = 8,3) potres leta 2015 je nastal 16. septembra pod oceanskim dnom blizu obale Čila v globini 22 km. Največ žrtev je zahteval potres, ki se je zgodil 25. aprila v Nepalu. Njegova magnituda je bila 7,8, zahteval je vsaj 8964 življenj. Najgloblji močnejši potres z žariščem na globini 664 km in navorno magnitudo 7,8 se je zgodil 30. maja pod oceanskim dnom na območju otokov Bonin. Najmočnejši potres v Evropi je 17. novembra stresel grški otok Lefkada, njegova magnituda je bila 6,5.

Abstract

There were 58 earthquakes in the world in year 2015 that either reached or exceeded a moment magnitude (M,) of 6.5. One earthquake had the moment magnitude greater than or equal to 8.0 and 18 between 7.0 and 7.9. At least 17 earthquakes have claimed human lives; in total there were at least 9635 victims. The most devastating earthquake in 2015 took place on 25 April in Nepal, where at least 8964 people were killed. The 16 September earthquake offshore of Chile ranked first in terms of the released energy, with a moment magnitude of 8.3. The deepest strong earthquake took place on 30 May near Bonin Islands with a hypocentre 664 km below the surface and the moment magnitude of 7.8. The strongest earthquake in Europe with moment magnitude 6.5 struck Greek island Lefkada on 17 November.

Uvod

Zemljina trdna lupina, debela povprečno približno 100 km pod celinami in 50 pod oceani, se imenuje litosfera in jo sestavlja več tektonskih plošč (slika 1). Največje so Tihomorska, Severnoameriška, Južnoameriška, Evrazijska, Afriška, Avstralska in Antarktična. Za svetovno potresno dejavnost so pomembne tudi številne manjše plošče. Tektonske plošče se zaradi konvekcijskih tokov v astenosferi, viskozni plasti v Zemljinem plašču pod litosfero, nenehno počasi premikajo. Med seboj se lahko razmikajo (razmične ali divergentne meje), primikajo (primične ali konvergentne meje) ali drsijo druga ob drugi (zmične ali transformne meje plošč). Razmikanje tektonskih plošč lahko poteka na območju oceanov (vdiranje magme iz astenosfere skozi razpoko med ploščama, pri čemer se iztisnjena magma strjuje v novo oceansko skorjo in nastanejo oceanski grebeni) ali na celinah (tektonsko ugrezanje ob nastajanju razsežnega tektonskega jarka ali razpoke v celinski plošči, ki sčasoma postane meja plošč). Pri primikanju plošč se oceanska plošča podriva pod drugo oceansko ali celinsko ploščo, lahko pa celinski plošči trčita, kar povzroči dviganje skorje in nastanek gorovij. Prelom, ob katerem plošči drsita druga ob drugi, imenujemo transformni prelom (Lapajne, 2013).

Posledice gibanja celinskih in oceanskih plošč oziroma tektonike litosferskih plošč so burni geološki pojavi, kot so vulkani in potresi, ki nastajajo predvsem na stikih in v bližini stikov plošč. Slika 1 kaže povezanost tektonike plošč s potresno dejavnostjo, saj je večina močnejših potresov nastala na stikih tektonskih plošč. Narisani so le tisti, ki so leta 2015 dosegli ali presegli navorno magnitudo 6,5 (6,0 za evropsko-mediteransko območje), in tisti šibkejši, ki so zahtevali človeška življenja. Navorna magnituda je mera za velikost potresa, ki je primerna tudi za najmočnejše potrese in je določena s potresnim navorom. Ta je definiran kot zmnožek strižnega modula kamnine prelomnega območja, površine potresnega pretrga in povprečne

Slika 1: Porazdelitev najmočnejših potresov leta 2015 na Zemlji. Velikost krogov kaže potresno magnitudo, barva pa žariščno globino. Označene so tudi glavne tektonske plošče. *Figure 1*: Distribution of the strongest earthquakes in 2015. The size of the circle indicates the magnitude and the colour designates the focal depth. Main tectonic plates are also shown.

velikosti zdrsa vzdolž preloma. Lahko ga izračunamo iz zapisov potresnega valovanja ali iz geoloških opazovanj (Lapajne, 2013). Če bi narisali nadžarišča oziroma epicentre vseh potresov, bi videli, da potresi nastajajo predvsem na stikih med posameznimi ploščami. Prav prostorska porazdelitev potresov je tudi razkrila potek mej ali stikov med ploščami in je bila pred približno petdesetimi leti eden najpomembnejših podatkov pri oblikovanju teorije tektonike litosferskih plošč.

Pregled najmočnejših potresov

V preglednici 1 so podatki o najmočnejših potresih leta 2015 (NEIC, 2015a; NEIC, 2016a; List of earthquakes in 2015, 2016; ARSO, Urad za seizmologijo in geologijo, 2015). Našteti so tisti, ki so dosegli ali presegli navorno magnitudo 6,5 (6,0 za evropsko-mediteransko območje), in tisti šibkejši (10), ki so zahtevali človeška življenja. Mw je oznaka za navorno magnitudo. Globina potresov je podana v kilometrih. V stolpcu o številu žrtev je navedeno skupno število žrtev in pogrešanih za posamezen potres. Preglednica se konča z imenom širšega nadžariščnega območja potresa. Svet je namreč za statistične potrebe seizmologije razdeljen na 729 Flinn-Engdahlovih geometrijskih območij (Young in drugi, 1996).

Preglednica 1: Seznam potresov leta 2015, katerih navorna magnituda Mw je bila enaka ali večja od 6,5 (6,0 za evropsko--mediteransko območje). Dodani so potresi, katerih magnituda je bila sicer manjša, a so zahtevali smrtne žrtve. *Table 1:* List of the earthquakes in 2015 with moment magnitude Mw equal to or greater than 6.5 (6.0 for European-Mediterranean region). Earthquakes with magnitudes below 6.5 that have claimed human lives are also included.

datum	čas (UTC)	koor	dinati	mag.	globina	število) ohmočio				
uatum	ura.min	širina	dolžina	lolžina M _w km Žrtev		žrtev					
dete	time (UTC)	coord	dinates	mag.	depth	number					
date	hh.min	lat	lon	M _w	km	victims	area				
7.1.	5.07	5,91 S	82,66 Z	6,5	8		pod morskim dnom, južno od Paname				
23. 1.	3.47	17,03 J	168,52 V	6,8	220		pod morskim dnom, otočje Vanuatu				
11.2.	18.57	23,11 J	66,69 Z	6,7	223		provinca Jujuy, Argentuna				
13. 2.	18.59	52,65 S	31,90 Z	7,1	17		pod morskim dnom, severni del Srednjeatlantskega hrbta				
16. 2.	23.06	39,86 S	142,88 V	6,7	23		pod morjem ob vzhodni obali Honšuja, Japonska				
27.2.	13.45	7,29 J	122,53 V	7,0	552		pod morskim dnom, Floreško morje				
29. 3.	23.48	4,73 J	152,56 V	7,5	41		pod morskim dnom med Novo Britanijo in Novo Irsko, Papua Nova Gvineja				
30. 3.	8.48	15,50 J	173,03 Z	6,5	11		pod morskim dnom v območju Tongovskega jarka				
16.4.	18.07	35,14 S	26,83 V	6,0	20		pod morskim dnom vzhodno od Krete				
17.4.	15.52	15,88 J	178,60 Z	6,5	10		pod morskim dnom, vzodno od Fidžija				
20.4.	1.42	24,20 S	122,32 V	6,4	29	1	pod morskim dnom, vzhodno od Tajvana				
25.4.	6.11	28,23 S	84,73 V	7,8	8	8964	Nepal				
25. 4.	6.45	28,22 S	84,82 V	6,6	10		Nepal				

	čas (UTC)	kooi	oordinati mag. globina števil		število	a hara Xta		
datum	ura.min	širina	dolžina	M _w	km	žrtev	оршосје	
	time (UTC)	coord	dinates	mag.	depth	number		
date	hh.min	lat	lon	M _w	km	of victims	area	
26.4.	7.09	27,77 S	86,02 V	6,7	23		Nepal	
30.4.	10.45	5,38 J	151,77 V	6,7	31		Nova Britanija, Papua Nova Gvineja	
1. 5.	8.06	5,20 J	151,78 V	6,8	44		Nova Britanija, Papua Nova Gvineja	
5. 5.	1.44	5,46 J	151,88 V	7,3	55		Nova Britanija, Papua Nova Gvineja	
7.5.	7.01	7,22 J	154,56 V	7,1	10		pod morskim dnom, območje Papue Nove Gvineje	
12. 5.	7.05	27,81 S	86,07 V	7,3	15	218	Nepal	
12. 5.	21.12	38,91 S	142,03 V	6,8	35		pod morskim dnom, vzhodno od obale prefekture Miyagi, Japonska	
19. 5.	15.25	54,33 J	132,16 Z	6,7	7		pod morskim dnom, območje Tihooceansko- antarktičnega hrbta	
20. 5.	22.48	10,88 J	164,17 V	6,8	11		pod morskim dnom, območje Salomonovih otokov	
22. 5.	21.45	11,06 J	163,70 V	6,9	11		pod morskim dnom, območje Salomonovih otokov	
22. 5.	23.59	11,11 J	163,22 V	6,8	10		pod morskim dnom, območje Salomonovih otokov	
29. 5.	7	56,59 S	156,43 Z	6,7	73		pod morskim dnom, vzhodno od otoka Sutwik, Aljaska	
30. 5.	11.23	27,84 S	140,49 V	7,8	664		pod morskim dnom, severozahodno od otokov Bonin	
4.6.	23.15	5,99 S	116,54 V	6,0	10	18	Ranau, zvezna država Sabah, Malezija	
17.6.	12.51	35,36 J	17,16 Z	7,0	10		pod morskim dnom, južni del Srednjeatlantskega hrbta	
23. 6.	12.18	27,74 S	139,73 V	6,5	460		pod morskim dnom, zahodno od otokov Bonin	
3.7.	1.07	37,46 S	78,15 V	6,4	20	3	Sinkiang, Kitajska	
10.7.	4.12	9,31 J	158,40 V	6,7	12		pod morskim dnom, območje Salomonovih otokov	
16.7.	15.16	13,87 S	58,55 Z	6,5	20		pod morskim dnom, severovzhodno od Barbadosa	
18.7.	2.27	10,40 J	165,14 V	7,0	11		pod morskim dnom, zahodno od Svetokriških otokov	
24.7.	20.59	33,86 S	73,19 V	5,1	17	3	Murree, Pakistan	
27.7.	4.49	52,38 S	169,45 Z	6,9	29		pod morskim dnom, območje Aleutov, Aljaska	
27.7.	21.41	2,63 J	138,53 V	7,0	48	1	Papua, Indonezija	
7. 8.	1.25	2,14 J	28,90 V	5,8	11	1	jezero Kivu, vzhodni Kongo	
10. 8.	4.12	9,35 J	158,05 V	6,6	22		pod morskim dnom, blizu Salomonovih otokov	
12. 8.	18.49	9,33 J	157,88 V	6,5	6		pod morskim dnom, blizu Salomonovih otokov	
13. 9.	8.14	24,93 S	109,62 Z	6,7	10		pod morskim dnom, Kalifornijski zaliv, Mehika	
16. 9.	22.54	31,57 J	71,67 Z	8,3	22	14	pod morskim dnom, ob obali regije Coquimbo, Čile	
datum	čas (UTC)	koordinati		mag.	globina	lobina število	ahmažia	
---------	---------------	-------------	----------	----------------	---------	-------------------	---	--
	ura.min	širina	dolžina	M _w	km	žrtev	ортосје	
date	time (UTC)	coordinates		mag.	depth	number		
	hh.min	lat	lon	M _w	km	of victims	area	
16. 9.	23.18	31,56 J	71,43 Z	7,0	28		Illapel, regija Coquimbo, Čile	
17.9.	3.55	31,42 J	71,69 Z	6,5	27		pod morskim dnom, ob obali regije Coquimbo, Čile	
17. 9.	4.01	31,52 J	71,80 Z	6,7	23		pod morskim dnom, ob obali regije Coquimbo, Čile	
21.9.	17.04	31,73 J	71,38 Z	6,6	35		Illapel, regija Coquimbo, Čile	
24. 9.	15.53	0,62 J	131,26 V	6,6	18		pod morskim dnom, severno od Soronga, Indonezija	
17. 10.	11.33	25,47 J	64,48 Z	5,8	17	1	provinca Salta, Argentina	
20. 10.	21.52	14,84 J	167,31 V	7,1	135		pod morskim dnom, blizu Vanuatuja	
26. 10.	9.09	36,52 S	70,37 V	7,4	231	399	Farkhan, Hindukuš, Afganistan	
4. 11.	3.44	8,34 J	124,88 V	6,5	20		otok Alor, indonezija	
7. 11.	6.58	8,47 S	71,40 Z	5,3	15	1	Lagunillas, venezuela	
7. 11.	7.31	30,89 J	71,45 Z	6,8	46		regija Coquimbo, Čile	
8. 11.	16.47	6,84 S	94,65 V	6,6	10		pod morskim dnom, blizu Nikobarov	
9. 11.	16.03	51,64 S	173,08 Z	6,5	15		pod morskim dnom, južno od otoka Atka, Aleuti, Aljaska	
11. 11.	1.54	29,50 J	72,01 Z	6,9	12		pod morskim dnom, blizu obale čilske regije Coquimbo	
11. 11.	2.46	29,51 J	72,06 Z	6,9	10		pod morskim dnom, blizu obale čilske regije Coquimbo	
13. 11.	20.51	31,00 S	128,87 V	6,7	12		pod morskim dnom, jugozahodno od Kjušuja, Japonska	
17. 11.	7.01	38,67 S	20,60 V	6,5	11	2	Nidri, grški otok Lefkada	
18. 11.	18.31	8,90 J	158,42 V	6,8	13		pod morskim dnom, v bližini Salomonovih otokov	
22. 11.	20.38	8,52 S	71,39 Z	5,1	10	1	Lagunillas, venezuela	
23. 11.	20.41	16,98 S	98,91 Z	5,6	34	2	zvezna država Guerrero, Mehika	
24. 11.	22.45	10,54 J	70,94 Z	7,6	606		regija Madre de Dios, Peru	
24. 11.	22.05	10,06 J	71,02 Z	7,6	620		regija Ucayali, Peru	
26. 11.	5.45	9,18 J	71,29 Z	6,7	602		zvezna država Acre, Brazilija	
4. 12.	22.25	47,62 J	85,09 V	7,1	35		pod morskim dnom, območje Jugovzhodnega indijskooceanskega hrbta	
7. 12.	7.05	38,21 S	72,78 V	7,2	22	2	regija Goro-Badakshan, Tadžikistan	
9. 12.	10.21	4,11 J	129,51 V	6,9	21		pod morskim dnom, južno od otoka Maluku, Bandsko morje	
17. 12.	19.49	15,80 S	93,63 Z	6,6	85		pod morskim dnom, Tehuantepeški zaliv, Mehika	
25. 12.	19.14	36,49 S	71,13 V	6,3	206	4	Hindukuš, Afganistan	

Leta 2015 je bilo 58 potresov, ki so dosegli ali presegli navorno magnitudo 6,5. Navorna magnituda enega potresa je bila večja oziroma enaka 8,0, osemnajst pa jih je bilo z magnitudo med 7,0 in 7,9, kar pomeni, da leto 2015 ne odstopa od dolgoletnega povprečja. Po statističnih analizah, ki temeljijo na opazovanjih od leta 1900, se povprečno vsako leto zgodi en potres z magnitudo vsaj 8,0, 15 pa jih je z magnitudo med 7,0 in 7,9 (NEIC, 2016b). Leta 2015 je v sedemnajstih potresih, ki so zahtevali človeška življenja, umrlo vsaj 9635 ljudi.

Največ potresov (približno 90 % vseh in 81 % najmočnejših) se zgodi v Obtihomorskem pasu, imenovanem tudi Ognjeni obroč, ki obkroža Tihi ocean (NEIC, 2016c). Leto 2015 ni izjema, saj se je tu zgodila večina potresov z navorno magnitudo 6,5 ali več, med njimi tudi najmočnejši. Ta je nastal 16. septembra ob 22.54 po svetovnem času – UTC (ob 19.54 po lokalnem času), njegova navorna magnituda je bila 8,3. Zgodil se je pod oceanskim dnom, 48 km zahodno od čilskega mesta Illapel. Točka, v kateri se je sevanje energije potresnega valovanja začelo, imenovana tudi žarišče potresa, je bila 22 km pod morskim dnom. Potres je nastal na območju, kjer se plošča Nazca podriva pod Južnoameriško. Podrivati se začne na območju Perujsko-čilskega jarka (85 km zahodno od žarišča potresa 16. septembra) in se premika proti vzhodu-severovzhodu s hitrostjo 74 mm na leto glede na južnoameriško ploščo. Pri potresu se je aktiviral prelom v dolžini okoli 230 km. Sledili so mu številni popotresi, najmočnejši 24 minut po glavnem potresu z navorno magnitudo 7,0 (NEIC, 2015a; NEIC, 2015b).

Potres je zahteval 14 življenj. V mestu Illapel, ki ima okoli 30.000 prebivalcev, so ostali brez elektrike in oskrbe z vodo. Okoli 9000 ljudi je ostalo brez strehe nad glavo. Potres je povzročil tudi cunami, ki je nekaj minut po potresu zadel obalo pri mestu Coquimbo (največja višina valov je bila 4,5 metra). Potres so čutili tudi v Argentini in Braziliji (2015 llapel earthquake, 2016).

Slika 2: Trikomponentni zapis potresa 16. septembra 2015 magnitude 8,3 pod morskim dnom blizu obale Čila na potresni opazovalnici LJU državne mreže potresnih opazovalnic. Prikazan je 150 minut dolg zapis. *Figure 2*: Three-component seismogram of earthquake on 16 September 2015 (M_w =8.3) offshore of Chile, as recorded on LJU station. The figure shows a 150-minute long record.

Potresni valovi P (vzdolžni ali longitudinalni valovi) so do potresne opazovalnice na Golovcu v Ljubljani (LJU), ene izmed 26 opazovalnic državne mreže potresnih opazovalnic (Vidrih in drugi, 2006), potovali približno 18 minut. Oddaljenost opazovalnice LJU od izvora potresa je približno 109,5 stopinje oziroma okoli 12.155 km (1° ≈ 111 km). Na sliki 2 je prikazan 150 minut dolg trikomponentni zapis tega potresa na potresni opazovalnici LJU z označenimi prihodi nekaterih faz potresnega valovanja.

Največ žrtev leta 2015 je zahteval potres, ki se je zgodil 25. aprila ob 6. uri in 11 minut po svetovnem času (ob 11.56 po lokalnem času) v Nepalu. Slovenske potresne opazovalnice, oddaljene približno 6.315 km od žarišča, so ga zabeležile 10 minut kasneje (slika 3). Magnituda potresa je bila 7,8. Nadžarišče potresa je bilo 36 km vzhodno od mesta Khudi oziroma 82 km severozahodno od Katmanduja, nepalskega glavnega mesta z več kot 1,4 milijona prebivalcev. Žarišče je bilo na globini 8 km, kar ga uvršča med plitve in zato bolj uničujoče potrese v primerjavi z globljimi. Potres je zahteval 8964 življenj (8857 v Nepalu, 78 v Indiji, 25 na Kitajskem in 4 v Bangladešu), ranjenih je bilo več kot 21 tisoč ljudi. Več sto tisoč ljudi je ostalo brez strehe nad glavo, cele vasi so bile zravnane z zemljo (sliki 4a in 4b). Potres je sprožil snežni plaz pod Mt. Everestom, pod katerim je življenje izgubilo 19 alpinistov (April 2015 Nepal Earthquake, 2016).

Potres je nastal na območju trka med Indijsko in Evrazijsko ploščo, katerega posledica je nastanek in dvigovanje Himalaje. Območje Himalaje je del Evropsko-Azijskega pasu, ki je v svetu na drugem mestu po potresni dejavnosti (v njem se zgodi 17 % vseh najmočnejših potresov) (NEIC, 2016c). Pri potresu se je aktiviral približno 120 km dolg prelom vzhodno od žarišča. Močnejši potresi so tu pogosto rušilni in zahtevajo človeška življenja, saj so zgradbe zaradi slabe gradnje zelo ranljive (slika 5). Sreča v nesreči je bila, da se je potres zgodil podnevi, ko je bila večina ljudi zunaj hiš oziroma na delu na poljih. Najmočnejši

10000 mmbc - 8000 - 8000 - 4000 - • KOGS B 3000 - - 4000 - 8000 - - 10000 mmbc -	- Handromannadipersieleitheithe	winntavologi in the Balantitasi	ungunta la la de la constantia de la consta La constantia de la consta	
10000 miles - 8000 - 8000 - 8000 - 8000 - - 6000 - - 10000 miles - -	นี่มีสุด ระบงของสภาพี(สีกฎร์หญาสุด	mernistenligtet	arthlyn llyfel yn hyn ym ar yn gan gan gan yn gan gan gan yn gan gan gan gan gan gan gan gan gan ga	1484245-1154544144444441449504an449-44-449-440-440-440-440-440-440-440-4
100000 milese - 80000 - 40000 - 2000 - 2000 - 80000 - 80000 - 100000 milese - -100000 milese -	Hiterature de la constantia (de la constantia)	www.lint	nt/p/parage al/adultation-diversity-ut	₭₩₦₩₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
100000 milese = 80000 = 40000 = 80000 = 80000 = 40000 = 40000 = 80000 = 100000 milese =		woomen with the provident of the provide	hallandar for the state of the	wite 新聞
100000 nm/tesc - 80000 - 40000 - 80000 - 40000 - - 80000 - -80000 - -100000 nm/tesc -	- ปีหวิจไทร์ เหล่างจากที่ใจกังจารได้ปได้เสีย		alliniteside in son illiniteside data and and a fast	
06:10:00.000 06:20 2015115 20	1:00.000 05:30:00.000 05:40 (5115 2015115 201	:00.000 05:60:00.000 07:00:00.000 5116 2016(16 2016(16	07:10:00.000 07:20:00.000 07:30: 2016(16 2016(16 201	00.000 07:50:00.000 07:50:00.000 08:00:00.000 5(16 2016(16 2016(15 2016(15

Slika 3: Zapis navpične komponente potresa 25. aprila 2015 magnitude 7,8 v Nepalu na nekaterih opazovalnicah državne mreže potresnih opazovalnic. Prikazan je 120 minut dolg zapis.

Figure 3: Vertical-component seismogram of earthquake on 25 April 2015 (M_w =7.8) in Nepal, as recorded on some Slovenian seismic stations. The figure shows a 120-minute long record.

Slika 4: (a) Vas Barpak (5 km S od žarišča) in (b) uničenje po potresu 25. aprila 2015 v Nepalu *Vir*: (a) http://www.ghalegroup.com/tripDetail/291/51/1/Barpak-Village-Tour.html, (b) http://recordnepal.com/wire/no-longer-ease

Figure 4: (a) Village Barpak (5 km N from epicentre) and (b) destruction after the earthquake on 25 April 2015 in Nepal

(Source: (a) http://www.ghalegroup.com/tripDetail/291/51/1/Barpak-Village-Tour.html, (b) http://recordnepal.com/wire/no-longer-ease).

popotres se je zgodil 12. maja ob 7.05 po UTC (12.50 po lokalnem času) z magnitudo 7,3, njegovo žarišče pa je bilo 74 km vzhodno od Katmanduja (NEIC, 2015c).

Tridesetega maja ob 11. uri in 23 minut po svetovnem času (ob 20.23 po lokalnem času) je območje otokov Bonin stresel potres z navorno magnitudo 7,8. Z žariščem na globini 664 km je bil to leta 2015 najgloblji potres izmed tistih, ki so dosegli ali presegli navorno magnitudo vsaj 6,5. Nastal je na območju, kjer se Tihomorska plošča proti zahodu podriva pod Filipinsko s povprečno hitrostjo 39 mm na leto. O globokih potresih govorimo, kadar so žarišča potresov na globini večji kot 300 km. Ti so po navadi posledica deformacije znotraj plošče, ki tone, in ne deformacije na njenih robovih. Z globino postaja njena struktura vedno bolj zapletena, prisotne so lahko tudi interakcije med ploščo in njenimi odlomljenimi deli. Globoki potresi v nasprotju s plitvimi navadno ne povzročijo veliko škode na površju Zemlje, se jih pa čuti zelo daleč od njihovega nadžarišča (NEIC, 2015d).

Na območju Evropsko-Azijskega pasu je bilo tudi žarišče najmočnejšega potresa v Evropi leta 2015. Zgodil se je 17. novembra 10 minut čez 7. uro po svetovnem času (9.10 po lokalnem času), 10 km jugozahodno od mesta Nidri na otoku Lefkada. Magnituda potresa je bila 6,5, globina žarišča pa 11 km (NEIC, 2015e). Potres je zahteval dve življenji.

Slika 5: Poškodovana zgradba v mestu Madhyapur Thimi (88 km JV od žarišča) po potresu 25. aprila 2015 v Nepalu

Vir: http://www.emsc-csem.org/Earthquake/233/M7-8-NEPAL-on-April-25th-2015-at-06-11-UTC

Figure 5: Damaged building in Madhyapur Thimi (88 km SE from epicentre), after the earthquake on 25 April 2015 in Nepal

(Source: http://www.emsc-csem.org/Earthquake/233/M7-8-NEPAL-on-April-25th-2015-at-06-11-UTC).

Sklepne misli

Leta 2015 je bilo 69 potresov, ki so dosegli ali presegli navorno magnitudo 6,5 (6,0 za evropsko-mediteransko območje) ali pa zahtevali človeška življenja. Skupaj je umrlo vsaj 9635 ljudi. Najbolj neprizanesljivi so bili potresi v Nepalu, kjer so poleg velikega števila mrtvih za seboj pustili tudi veliko uničenje. Marsikje so ostali ljudje brez vsega in postali popolnoma odvisni od prejete pomoči, ki prihaja tudi po zaslugi številnih alpinistov in gornikov, ki se radi vračajo v ta konec sveta. Vendar pa si bo Nepal, ena izmed najrevnejših Azijskih držav, kljub mednarodni pomoči težko hitro opomogel.

Viri in literatura

- 2015 Ilapel earthquake. Wikipedia [online] (posodobljeno 23. 2. 2016). https://en.wikipedia.org/wiki/2015_ Illapel_earthquake (uporabljeno 20. 4. 2016).
- April 2015 Nepal Earthquake. Wikipedia [online] (posodobljeno 20. 4. 2016). https://en.wikipedia.org/wiki/ April_2015_Nepal_earthquake (uporabljeno 20. 4. 2016).
- ARSO, Urad za seizmologijo in geologijo, 2015. Preliminarni seizmološki bilten, 2015. Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Lapajne, J., 2013. Inženirsko seizmološki terminološki slovar [Elektronski vir], Amebis d.o.o., Kamnik in Agencija RS za okolje, Ljubljana (Zbirka Termania). http://www.termania.net/slovarji/131/seizmoloski-slovar.
- List of earthquakes in 2015. Wikipedia [online] (posodobljeno 20. 4. 2015). https://en.wikipedia.org/wiki/ List_of_earthquakes_in_2015 (uporabljeno 21. 4. 2016).
- NEIC, 2015a. 2015 Significant Earthquakes 2015. US Department of the Interior. Geological Survey, National Earthquake Information Center. http://earthquake.usgs.gov/earthquakes/browse/significant. php?year=2015 (uporabljeno 12. 10. 2016).
- NEIC, 2015b. M8.3 48km W of Illapel, Chile. US Department of the Interior. Geological Survey, National Earthquake Information Center (posodobljeno 12. 12. 2015). http://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a#general (uporabljeno 20. 4. 2016).
- NEIC, 2015c. M7.8 36km E of Khudi, Nepal. US Department of the Interior. Geological Survey, National Earthquake Information Center (posodobljeno 3. 5. 2015). http://earthquake.usgs.gov/earthquakes/ eventpage/us20002926#general (uporabljeno 20. 4. 2016).
- NEIC, 2015d. M7.8 189 km WNW of Chichi-shima, Japan. US Department of the Interior. Geological Survey, National Earthquake Information Center (posodobljeno 8. 8. 2015). http://earthquake.usgs. gov/earthquakes/eventpage/us20002ki3#general (uporabljeno 20. 4. 2016).
- NEIC, 2015e. M6.5 Greece. US Department of the Interior. Geological Survey, National Earthquake Information Center (posodobljeno 25. 3. 2016). http://earthquake.usgs.gov/earthquakes/eventpage/ gcmt20151117071007#general (uporabljeno 20. 4. 2016).
- NEIC, 2016a. Search Earthquake Archive. US Department of the Interior. Geological Survey, National Earthquake Information Center. http://earthquake.usgs.gov/earthquakes/search/ (12. 4. 2016).
- NEIC, 2016b. USGS FAQs. Earthquake Myths FAQs 11 FoundUS Department of the Interior. Geological Survey, National Earthquake Information Center. (posodobljeno 26. 2. 2016). http://www.usgs.gov/ faq/categories/9830/3355 (20. 4. 2016).
- NEIC, 2016c. USGS FAQs. Earthquake Myths FAQs 12 FoundUS Department of the Interior. Geological Survey, National Earthquake Information Center. (posodobljeno 24. 2. 2016). http://www2.usgs.gov/ faq/categories/9831/3342 (20. 4. 2016).

Vidrih, R., Sinčič, P., Tasič, I., Gosar, A., Godec, M., Živčić, M., 2006. Državna mreža potresnih opazovalniv. Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana, 287.

Young, J., B., Presgrave, B., W., Aichele, H., Wiens, D., A. and Flinn, E., A., 1996. The Flinn-Engdahl Regionalisation Scheme: the 1995 revision. Physics of the Earth and Planetary Interiors, v. 96, 223–297.