

Potresi v letu 2017 Earthquakes in 2017

KOGS BHZ	[An Mr.	mamm	montom	form	mound
GROS BHZ	~	man	mon	man		
PERS BHZ			man			
DOBS BHZ	mm	mont	annun	man	mon	mount
GOLS BHZ			minim	man	m	man
ZALS BHZ		in	monorm	monteres		······································
CRES BHZ	Frank	finder	monorm	manfmm	hanne	man
LEGS BHZ			mon	mmm	how	man
PDKS BHZ		-tiv	Manfrancia	www.ang	frontes	·
MOZS BHZ		human	mon	mann	forman	mm
VISS BHZ			mon	mahanan	hand	mon
GORS BHZ	mm	Anno	innon	mon	mon	monor
LJU BHZ			prince	man	finnen	man
CRNS BHZ			forman	mannam	homenen	
BOJS BHZ	Frankin	mont	mound	manymen	mon	man
GBAS BHZ	[mount	a and the second se		
CADS BHZ	mm	mon	Ammin	manham	man	mon
ROBS BHZ	Emm	mm	mound	nominamo	mon	mm
VOJS BHZ	[m	Myruman	mon	mm	mont
CEY BHZ		~	Jermin	montene	m	
GBRS BHZ		~~	Jamman	man	hank	
JAVS BHZ	[marken marken and marke		Marin			
KNDS BHZ	[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	manne	inner	manimum	frank	m
SKDS BHZ		mm	m	man	town	man
	03:41:10.000 03:41:20.000 0 2017245 2017246	3:41:30.000 03:41:40.000 2017246 2017246	03:41:50.000 03:42:00 2017246 201724	000 03:42:10.000 03:44 6 2017245 20	17246 03:42:30.000 2017246	03:42:48.000 03:42:59.000 2017246 2017246

Izdajatelj

Ministrstvo za okolje in prostor Agencija RS za okolje Vojkova 1b, Ljubljana Spletni naslov: www.arso.gov.si e-naslov: gp.arso@gov.si

Urednik

dr. Andrej Gosar

Grafična priprava

Peter Sinčič

Uredniški svet

dr. Andrej Gosar Ina Cecić dr. Martina Čarman Matjaž Godec mag. Tamara Jesenko Peter Sinčič dr. Barbara Šket Motnikar mag. Izidor Tasič Polona Zupančič mag. Mladen Živčić

Naslovnica:

Zapis testne eksplozije termonuklearne bombe, ki jo je izvedla Severna Koreja 3. 9. 2017, na opazovalnicah državne mreže potresnih opzovalnic.

Cover Page:

North Korean nuclear test conducted on 3 September 2017 recorded by Seismic network of the republic of Slovenia

Mednarodna standardna serijska številka:

ISSN 1318 - 4792

Kazalo / Contents

^p eter Sinčič, Izidor Tasič, Mladen Živčić Potresne opazovalnice v Sloveniji v letu 2017 Seismic Network in Slovenia in 20175
Anita Jerše Sharma, Tamara Jesenko, Barbara Šket Motnikar, Ina Cecić, Mladen Živčić, Polona Zupančič Potresi v Sloveniji leta 2017 Earthquakes In Slovenia In 201713
zidor Tasič, Marko Mali, Luka Pančur, Peter Sinčič, Igor Pfundner, Bojan Uran, Jože Prosen Delovanje državne mreže potresnih opazovalnic v letu 2017 Seismic Stations Operation in Slovenia in 201730
<i>Martina Čarman, Mladen Živčić</i> Poročilo samodejno določenih magnitud na zapisih potresnih opazovalnic Report of automatically defined magnitudes from seismic stations records
<i>Martina Čarman, Mladen Živčić</i> Analiza vršnih pospeškov tal na potresnih opazovalnicah v Sloveniji Analysis of Peak Ground Acceleration at Slovenian Seismic Stations43
<i>Martina Čarman, Mladen Živčić</i> Razločevanje med naravnimi in umetnimi potresi Discrimination Between Natural Earthquakes And Man-made Seismicity
na Cecić ¹ , Dušan Nečak², Marko Berus³ Potres 29. januarja 1917 pri Brežicah in njegove posledice Fhe 29 January Brežice Earthquake And Its Consequences
Γamara Jesenko Najmočnejši potresi po svetu leta 2017 Γhe World's Largest Earthquakes in 201781
Martina Čarman, Ina Cecić, Romea Krapež Seizmološka knjižnica Agencije Republike Slovenije za okolje Fhe Seismological Library of the Slovenian Environment Agency

Potresne opazovalnice v Sloveniji v letu 2017 Seismic Network in Slovenia in 2017

Povzetek

Leta 2017 je na območju Slovenije delovalo 29 digitalnih potresnih opazovalnic z neprekinjenim prenosom podatkov v središče za obdelavo v Ljubljani, 3 digitalne opazovalnice z neprekinjenim beleženjem podatkov na lokalni pomnilniški medij ter 10 digitalnih opazovalnic, opremljenih z akcelerografi, za opazovanje seizmičnosti na urbanih območjih. Slednje beležijo in prenašajo v središče za obdelavo v Ljubljani samo zapise seizmičnih dogodkov, pri katerih pospeški presežejo prag proženja. Različne posodobitve opreme smo izvedli na 9 opazovalnicah.

Abstract

In the year 2017 there were 29 digital seismic stations incorporated in Seismic Network of the Republic of Slovenia (SNRS) with real-time continuous data transmission to the data centre in Ljubljana, 3 digital stations with continuous recording of data on local media, and 10 stations equipped with accelerographs to monitor seismicity in urban areas. The latter record and transmit only triggered events to the data centre in Ljubljana. Different update of equipment were implemented at 9 seismic stations.

Digitalne potresne opazovalnice

Leta 2017 je v Sloveniji stalno delovalo 29 digitalnih potresnih opazovalnic (preglednica 1, slika 1). Na opazovalnicah v Hrastniku (HRAP) in v Zagorju ob Savi (ZOSP, ZOPP), ki sta bili zaradi povečane seizmične aktivnosti v Zasavju postavljeni začasno, so se podatki shranjevali na lokalni pomnilniški medij. Z ostalih opazovalnic se podatki samodejno neprekinjeno prenašajo v središče za obdelavo podatkov (SOP) na Vojkovo 1b v Ljubljani in rezervno središče na observatoriju na Golovcu v Ljubljani.

Tudi v tem letu smo izvedli nekaj večjih posodobitev seizmološke opreme. Na opazovalnicah GBRS, GCIS, GROS in ROBS (slika 2) smo zajemalno enoto Q730 zamenjali z novo Q330HR (Tasič in sod., 2016), na opazovalnici LEGS pa z zajemalno enoto Centaur. Na opazovalnicah GBRS, GCIS, JAVS, KNDS in ROBS smo poleg seizmometra namestili še akcelerometer.

Komunikacijsko opremo smo zamenjali na opazovalnicah KNDS in ZAVS, na BOJS in GOLS pa smo miniračunalnika JETBOX zamenjali z Raspberry Pi.

Za bolj natančno opredelitev lokacije nadžarišča potresov v Zasavju je ARSO na tem območju že v letu 2016 začasno postavila dve prenosni potresni opazovalnici, eno v Hrastniku (HRAP) in drugo v Zagorju ob Savi (ZOSP) (slika 3), ki pa smo jo v letu 2017 prestavili na novo lokacijo (ZOPP) (Živčić in sod, 2018).

Slika 1: Potresne opazovalnice Urada za seizmologijo leta 2017 *Figure 1*: Seismic network of Seismology Office in 2017.

Preglednica 2: Digitalne potresne opazovalnice v Sloveniji v letu 2017

* - opazovalnica je delovala že prejšnje leto

** - delovanje opazovalnice se nadaljuje v prihodnjem letu

Table 2: Digital seismic stations in Slovenia in 2017.

* - station has been in function in previous year

** - station continues to operate in 2017

		zem. šir.	zem.	n.	reelečka	seizmometer/	zajemalna	čas de	lovanja
opaz.	ozn.	latitudo	dol.	viš.	podlaga	ser. št.	naprava/ser. št.	operatio	nal time
station	code	^o N	°E	[m]	local geology	seismometer/sn	unit/sn	od/from	do/to
Bojanci		15 5042	15 0510	252	kredni	STS-2/10417	Q330HR/5655	\$	9. 6. 2017
1986	B035	45,5045	15,2516	252	limestone	EpiSensor/1723	Q330HR/6087	9. 6. 2017	\$\$
Brezje pri Senušah 1990	KBZP	45,9405	15,4390	208	glina clay	CMG-40T/T4B09	CMG-DM24S3/ A2533	☆	**
Cerknica (Goričice) 1975	CEY	45,7381	14,4221	579	apnenec limestone	FBA 23/32168 CMG-3ESP/T36903	Q330HR/6104	☆	**
Cesta 1996	CESS	45,9733	15,4632	372	dolomit dolomite	CMG-40T/T4B18	HRD24-2432/172	☆	**
Čadrg 2003	CADS	46,228	13,7368	700	kredni apnenci limestone	CMG-3ESP/T36897 CMG-T5/T5JD6	Q330HR/5797	☆	**
Črešnjevec 2002	CRES	45,826	15,4569	430	dolomit dolomite	STS-2/90733 EpiSensor/782	Q330HR/5797	\$	**
Črni Vrh 2005	CRNS	46,0807	14,2614	712	sp.triasni sivi dolomit dolomite	CMG-3ESP/T36081 CMG-T5/T5JD4	Q330HR/6105	\$	\$\$
Dobrina	0000	40.4404	45 4004	407	spodnjetriasni		Q730/2000101	\$	13.10.2017
1996	DORS	46,1494	15,4694	427	laporji marl	CMG-3ESP/135605	Q330HR/6314	13.10.2017	**
Gorenja Brezovica 2008	GBAS	45,9348	14,4434	538	zgornjetriasni dolomit dolomite	CMG-3ESP/T35448 CMG-5T/T5HL9	Q330HR/6100	\$	\$\$
Gornia Briga					zgornjetriasni	CMG-3ESP/T35448	Q730/2000105	\$	17.10.2017
2007	GBRS	45,5311	14,8101	610	dolomit dolomite	CMG-5TC/T5KU6	Q330HR/6315	17.10.2017	**
Gornii Cirnik					dolomit	CMG-3ESP/T34749	Q730/2000109	☆	4. 10. 2017
2003	GCIS	45,8672	15,6275	390	dolomite	CMG-5TC/T5KU5	Q330HR/6311	4. 10. 2017	**
					masiven		Q730/2000100	☆	5. 9. 2017
2002	GOLS	46,0107	15,6245	559	massive	0100-40101/14020	Centaur/101	5. 9. 2017	ት ት
					dolomite	FBA23/32206			\$\$
Gorjuše 2004	GORS	46,3174	13,9999	1048	ploščasti apnenec z roženci platty limestone with chert	CMG-3T/T36604 EpiSensor/785	Q330HR/5657	4	**
						CMG-3ESP/T335604	Q730/2000113	\$	12. 7. 2017
Grobnik	GROS	46,4610	15,5017	930	tonalit	CMG-40T/T4B23		12. 7. 2017	10. 10. 2017
2002					tonalite	CMC 2ESD/T20559	Q330HR/6312	10. 10. 2017	21. 11. 2017 """
Hrastnik						GIVIG-JESP/139008		21.11.2017	ਅਯ
2016	HRAP	46,1443	15,069	480		Le-3D-5s/0059	PR6-24/4976	\$	24. 10. 2017
Javornik	JAVS	45,8934	14,0643	1100	zgornje triasni	CMG-3T/T37725	Q330HR/5881	☆ 10 0 0047	☆☆ ^
2000						UNIG-510/15HL6		16. 9. 2017	ជជ

		zem. šir.	zem.	n.	gooločko	seizmometer/	zajemalna	čas de	lovanja
opaz.	ozn.	latitudo	dol.	viš.	podlaga	ser. št.	naprava/ser. št.	operatio	nal time
station	code	^o N	°E	[m]	local geology	seismometer/sn	unit/sn	od/from	do/to
Knežji dol	KNDS	45 5279	14 3806	1024	zgornje jurski	STS-2/120925	Q330HR/5798	\$	☆☆
2003		,	,		limestone			13. 9. 2017	☆☆
Kog 2004	KOGS	46,4481	16,2503	245	glina clay	CMG-3T/T37085 EpiSensor/784	Q330HR/5653	\$	**
							Q730/2000107	\$	6.7.2017
Legarje	LEGS	45,9488	15,3177	390	sivi dolomit dolomite	CIVIG-401D/14D29	Contaur/105	6. 7. 2017	ት ት
2002						FBA-23/32168	Centaul/105	分	\$\$
Lisca 2002	LISS	46,0673	15,2906	948	masiven dolomit massive dolomite	CMG-40T/T4B06	EDR-209/6786	☆	ታታ
Ljubljana 1958	LJU	46,0438	14,5278	396	karbonski peščenjaki sandstone	STS-2/40316 EpiSensor/783	Q330HR/5656	\$	44
					ploččasti	CMG-3T/T37540		\$	**
Možjanca	MOZE	16 20/1	1/ //22	660	apnenec	CMG-5T/T5HL5		\$	26. 5. 2017
2005	IVIOZO	40,2941	14,4433	000	platty	CMG-5T/T5HL8	Q330HK/3034	26. 5. 2017	5. 10. 2017
					limestone	Fortis/TF089		5. 10. 2017	**
Pernice 2002	PERS	46,636	15,1167	795	blestnik schist	CMG-3ESP/T35616 CMG-5T/T5JD5	Q330HR/6102	☆	**
Deallana							Q730/2000110	\$	21. 9. 2017
2002	PDKS	46,0612	14,9977	679	dolomite	CIVIG-401 D1/14D20	Centaur/198	21. 9. 2017	**
						FBA-23/003349	Ochiadi/100	*	**
Robič					annenec	CMG-3ESP/T34746	Q730/2000106	\$	7.2.2017
2002	ROBS	46,2445	13,5094	257	limestone	Fortis/TE090	Q330HR/5880	7. 2. 2017	**
Skadanščina 2006	SKDS	45,5464	14,0143	552	ploščati apnenci platv limestone	STS-2/T10416 EpiSensor/786	Q330HR/5658	\$	44
						CMG 3T/T37529		\$	7. 2. 2017
Višnje	VISS	45,8033	14,8393	399	siv apnenec	CMG-3ESP/T35617	Q330HR/5879	7. 2. 2017	**
2003			-		limestone	CMG 5T/T5HL7		\$	ልል
Vojsko 2004	vojs	46,0322	13,8877	1072	zgornjetriasni dolomit dolomite	CMG-3ESP/T3S67 CMG 5T/T5V48	Q330HR/6103	4	**
Vrh pri					kremenov	CMG-3TBH/T35126		\$	11. 8. 2017
Dolskem	VNDS	46,1016	14,7014	531	peščenjak	CMG 40T/T4B22	Q330HR/5880	11. 8. 2017	☆☆
2006					sandstone	EpiSensor/1722		\$	ት ት
Zagorje 2016	ZOSP	46,1387	14,9893	250		Le-3D-5s/0768	PR6-24/4653	\$	10. 3. 2017
Zagorje 2017	ZOPP	46,1388	15,0024	279		Le-3D-5s/0768	PR6-24/4653	10. 3. 2017	24. 10. 2017
Zavodnje	7410	16 1212	15 0246	7/0	granodiorit		Q730/2000114	\$	29. 9. 2017
2005		+0,+342	10,0240	149	granodiorite	010 401/14011	Q330HR/6310	29. 9. 2017	**

Opazovalnice za beleženje močnega gibanja tal

Leta 2017 smo na petih potresnih opazovalnicah državne mreže namestili poleg seizmometra še akcelerometer, tako da je bilo konec leta 2017 že 23 opazovalnic opremljenih z z obema instrumentoma (preglednica 1). Za merjenje pospeškov tal v urbanih območjih imamo 10 lokacij opremljenih s pospeškometri/akcelerografi (BOGE, BOVC, DOLA, DRZN, GOTE, ILBA, KOBR, NEK0, FAGG in VOGR). Prenos podatkov z opazovalnice ILBA poteka neprekinjeno preko komunikacijskega omrežja državnih organov, z ostalih začasno nameščenih opazovalnic pa preko klicne povezave (linija ali GSM). Slednji instrumenti delujejo

Slika 2: Na potresni opazovalnici Robič (ROBS) smo namestili novo 6-kanalno zajemalno enoto Quanterra Q330HR (3) na katero smo poleg seizmometra Güralp CMG-3ESP(2) priključili še akcelerometer Güralp Fortis (1) (foto: Luka Pančur)

Figure 2: There are new 6-channel acquisition unitQuanterra Q330HR (3)installed on seismic station ROBS with seismometer Güralp CMG-3ESP (2) and accelerometer Güralp Fortis (1) connected (photo: Luka Pančur).

v prožilnem načinu in beležijo le dogodke, ki imajo pospeške tal večje od nastavljenega praga proženja. Podatki o času delovanja posameznih opazovalnic v urbanih območjih, njihovih oznakah, lokacijah in serijskih številkah so navedeni v preglednici 2.

Preglednica 2: Podatki o opazovalnicah za beleženje močnega gibanja tal, ki so v Sloveniji delovale v letu 2017.

Table 2: Free-standing strong motion seismic stations operating in Slovenia in 2017.vse leto = entire year.

opaz. station	ozn. code	zem. šir. latitude	zem. dol. Iongitude	nad. viš. elev.	senzor sensor type	zajemalna naprava acquisition	ser. številka serial	merilni obseg full scale	čas delovanja operational time
		°N	°E	[m]		unit	number	range	
Bogenšperk	BOGE	46,0237	14,8572	422	FBA-23	Etna	1245	1 g	vse leto
Bovec	BOVC	46,3382	13,5543	455	FBA-23	Etna	811	1 g	vse leto
Dolsko	DOLA	46,0938	14,6781	265	FBA-23	Etna	810	1 g	vse leto
Drežnica	DRZN	46,2586	13,6126	544	EpiSensor	Etna	2134	2 g	vse leto
Gotenica	GOTE	45,6095	14,7464	670	FBA-23	Etna	1246	1 g	vse leto
Ilirska Bistrica	ILBA	45,5638	14,2446	404	FBA-23	EDR 209	6142	0,25 g	vse leto
Kobarid	KOBR	46,2474	13,5786	234	EpiSensor	Etna	2133	2 g	vse leto
Krško (NEK)	NEK0	45,9391	15,5185	156	FBA-23	Etna	1334	2 g	vse leto
Ljubljana - FGG	FAGG	46,0459	14,4944	295	FBA-23	Etna	6597	2 g	vse leto
Vogršček	VOGR	45,9057	13,7259	106	EpiSensor	K2	2228	2 g	vse leto

Slika 3: Na začasnih opazovalnicah ZOPP in ZOSP v Zagorju je bil nameščen seizmometer Lenartz Le-3D-5s (1) in priključen na zajemalno enoto EarthData PR-6 (2) (foto: Marko Mali) *Figure 3*: On temporary seismic stations ZOPP in ZOSP in Zagorje seismometer Lenartz Le-3D-5s (1) acquisition unit EarthData PR-6 (2) were installed (photo: Marko Mali)

Število zabeleženih potresnih dogodkov

Slovenske potresne opazovalnice so leta 2017 zabeležile 3148 potresnih dogodkov, od tega 2186 lokalnih potresov, 280 bližnjih in 682 oddaljenih (ARSO, 2017). Seizmografi so zapisali tudi 1585 umetnih potresov (preglednica 3, sliki 4 in 5). Potresni dogodek je namreč lahko naravnega ali umetnega izvora.

Preglednica 3: Potresi v letu 2017, zabeleženi na slovenskih potresnih opazovalnicah.
Table 3: Earthquakes in 2017 recorded at Slovenian seismic network.

mesec	oddaljeni potresi	bližnji potresi	lokalni potresi	umetni potresi	dogodki
month	distant earthquakes	regional earthquakes	local earthquakes	artificial	events
januar January	42	26	171	71	310
februar February	39	30	135	62	266
marec March	48	14	175	119	356
april April	53	25	117	143	338
maj May	71	20	174	145	410
junij June	52	32	149	182	415
julij July	56	39	226	210	531
avgust August	62	17	210	170	459
september September	48	19	204	154	425
oktober October	65	18	294	106	483
november November	91	23	174	112	400
december December	55	17	157	111	340
skupaj Total	682	280	2186	1585	4733
legenda	Legenda: Oddaljeni potro Regionalni pot Lokalni potresi	esi / Distant eart resi / Regional e i / Local earthqu	hquakes earthquakes akes	Δ > 10° (> 1 1,5° < Δ < 10° Δ ≤ 1,5° (≤ 1	.100 km) (< 1.100 km) 160 km)
Legend	Δ - oddaljenos 111,1 km v sm Δ - distance fro tion, and 77 kr	t od Ljubljane v eri sever - jug in om Ljubljana, in n in E-W directic	kotnih stopinjah: 77km v smeri v degrees: 1° is ap n	1° predstavlja p zhod- zahod oprox. 111,1 km	ribližno in N-S direc-

Slika 4: Število potresnih dogodkov po mesecih v letu 2017 *Figure 4*: Monthly distribution of seismic events in 2017.

Slika 5: Število naravnih (oddaljenih, bližnjih in lokalnih posebej) in umetnih potresov po mesecih v letu 2017

Figure 5: Monthly distribution of earthquakes (distant, regional, local) and artificial events in 2017.

Literatura

Agencija Republike Slovenije za Okolje, 2017. Baza podatkov za potrese na ozemlju Slovenije leta 2017. Arhiv ARSO, Ljubljana.

Tasič, I., Mali, M., Pfundner, I., Pančur, L., 2016. Zajemalna enota Quanterra Q330HRS; preliminarni test šestih enot. Potresi v letu 2014 (ur. A. Gosar), ARSO, Urad za seizmologijo in geologijo, 50–54.

Anita Jerše Sharma, Tamara Jesenko, Barbara Šket Motnikar, Ina Cecić, Mladen Živčić, Polona Zupančič

Potresi v Sloveniji leta 2017 Earthquakes In Slovenia In 2017

Povzetek

Abstract

Leta 2017 je državna mreža potresnih opazovalnic zabeležila 2186 potresov v Sloveniji ali bližnji okolici, prebivalci so jih čutili vsaj 90. 19 potresov je imelo lokalno magnitudo večjo ali enako 2,0. Najmočnejši potres leta 2017 z lokalno magnitudo 2,9 se je zgodil 6. julija ob 18.58 po srednjeevropskem poletnem času (SEPČ) pri Litiji. Največja intenziteta potresa je bila IV–V EMS-98. Posamezni prebivalci Slovenije so čutili tudi štiri potrese, ki so se zgodili v srednji Italiji z največjo intenziteto III–IV EMS-98 na območju Slovenije, ter potres pri Bellunu (severna Italija) in potres na Krku (Hrvaška). In 2017 the Seismic Network of the Republic of Slovenia recorded 2186 local earthquakes, at least 90 of which were felt by the inhabitants. There were 19 earthquakes with a local magnitude equal to or higher than 2.0. The strongest earthquake in Slovenia in 2017 was on 6 July at 16:58 UTC near Litija. Its local magnitude was 2.9 and the maximum intensity IV-V EMS-98. Four regional earthquakes with epicentres in Central Italy were felt by a few persons in Slovenia. The maximum intensity of these four earthquakes in Slovenia was III-IV EMS-98. An earthquake near Belluno (Northern Italy) and one near Krk island (Croatia) were also felt in Slovenia.

Uvod

Leta 2017 je v Sloveniji delovalo 29 digitalnih opazovalnic z neprekinjenim prenosom podatkov v središče za obdelavo podatkov (SOP) na Vojkovo 1b v Ljubljani in rezervno središče na observatoriju na Golovcu v Ljubljani (Sinčič in drugi, 2019). Mrežo sta dopolnjevali še dve začasni opazovalnici, ena v Hrastniku (HRAP) in druga v Zagorju ob Savi (ZOSP), ki pa smo jo oktobra 2017 prestavili na novo lokacijo (ZOPP) (Živčić in drugi, 2018). Poleg tega so se v stvarnem času zbirali tudi podatki tujih potresnih opazovalnic. Predvsem opazovalnice sosednjih držav (Avstrija, Hrvaška, Italija, Madžarska) omogočajo natančnejši izračun lokacije potresa. Še posebej to velja za potrese, katerih nadžarišča so blizu slovenske državne meje.

Potresna dejavnost v Sloveniji leta 2017

Potresne opazovalnice državne mreže so leta 2017 zabeležile 2186 lokalnih potresov z žariščem v Sloveniji ali njeni bližnji okolici. Za lokalne potrese štejemo tiste, ki so nastali v Sloveniji ali njeni bližnji okolici (do 50 km od najbližjega slovenskega obmejnega kraja). Za 1626 lokalnih potresov smo zbrali dovolj podatkov, torej zapise z vsaj treh opazovalnic, da smo lahko izračunali lokacijo žarišča. Za 1619 izmed njih, ki so prikazani na sliki 1, smo lahko določili tudi magnitudo. 19 potresov je imelo lokalno magnitudo večjo ali enako 2,0, nobeden večjo od 3,0. Po podatkih za obdobje 1997–2015, potem ko iz kataloga odstranimo pred- in popotrese, se v Sloveniji vsako leto v povprečju zgodi 24 potresov z lokalno magnitudo večjo ali enako 2,0 in trije potresi z lokalno magnitudo večjo ali enako 3,0 (ARSO, 2018). Histogram na sliki 2 kaže porazdelitev lokalne magnitude (M_{Lv}), 97 odstotkov vseh potresov leta 2017 je imelo lokalno magnitudo manjšo od 1,7. Za potrese v Sloveniji in okolici določamo lokalno magnitudo, M_{Lv} na posamezni potresni opazovalnici iz navpične komponente zapisa hitrosti nihanja tal (Čarman in Živčić, 2019).

Slika 1: Nadžarišča potresov leta 2017, ki smo jim določili žariščni čas, koordinati nadžarišča in globino žarišča. Barva simbola ponazarja žariščno globino, njegova velikost pa vrednost lokalne magnitude M_{LV} **Figure 1**: Distribution of earthquake epicentres in 2017, with calculated hypocentral time, epicentral coordinates and focal depth; the coloured symbols of varying sizes denote focal depth and local magnitude M_{LV} . Magnituda = magnitude; globina = depth.

Slika 2: Porazdelitev magnitude (M_{LV}) potresov v Sloveniji leta 2017 *Figure 2*: Distribution of earthquakes in Slovenia in 2017 with respect to M_{LV} magnitude.

Slika 3: Porazdelitev globine žarišča potresov v Sloveniji leta 2017 (v kilometrih) *Figure 3*: Distribution of earthquakes in Slovenia in 2017 with respect to focal depth (in kilometres).

Porazdelitev globine žarišča potresov (slika 3) kaže, da so imeli leta 2017 vsi potresi na območju Slovenije in bližnje okolice (1532) žarišče do globine 30 km. 27 odstotkov potresov je imelo žariščno globino enako ali manjšo od 6 km, 65 odstotkov potresov se je zgodilo na globini med 6,1 in 15 km, 8 odstotkov potresov je imelo žarišče v globini med 15,1 in 21 km, 3 potresom (0,2 %) pa smo določili žariščno globino, ki je večja od 21 km.

Najmočnejši potres leta 2017 v Sloveniji se je zgodil 6. julija ob 16.58 po UTC (18.58 po SEPČ) v bližini Litije. Imel je lokalno magnitudo 2,9 in največjo intenziteto IV-V EMS-98. S kratico EMS-98 označujemo evropsko potresno lestvico (Grünthal, 1998). Potres ni povzročil poškodb, le v višjih nadstropjih so se ponekod prevrnili ali premaknili manjši nestabilni predmeti. Spremljal ga je doneči zvok, ki je prestrašil posameznike, da so zbežali na prosto.

V preglednici 1 so osnovni podatki za 80 lokalnih potresov z izračunano lokalno magnitudo, večjo ali enako 1,5, od katerih so jih prebivalci Slovenije čutili 43. Poleg teh je navedenih še 47 šibkejših potresov, ki so jih prebivalci Slovenije čutili in smo jim lahko izračunali lokacijo nadžarišča. Za vsak potres so navedeni datum (leto, mesec, dan), žariščni čas po UTC (ura, minuta, sekunda), koordinati nadžarišča (zemljepisna širina °N, zemljepisna dolžina °E), globina žarišča (km), lokalna magnituda (M_{LV}) in največja intenziteta po Evropski potresni lestvici (I_{max} EMS-98), ki jo je potres dosegel v Sloveniji, število opazovalnic (nst), ki so prispevale podatke, in celotna napaka (kvadratni koren srednje kvadratne napake, RMS, v sekundah) pri izračunu žariščnega časa. V stolpcu Potresno območje je za večino potresov v Sloveniji podano ime naselja, ki je najbližje nadžarišču in je navedeno v seznamu naselij Geodetske uprave RS (RGU, 1995), za preostala (nadžarišče je več kot 5 km oddaljeno od najbližjega naselja iz omenjenega seznama ali pa je izven slovenskih meja) smo toponim poiskali s pomočjo storitev Google Zemljevidi/Google Earth. Če podatki niso zadoščali za nedvoumno določitev intenzitete, smo potresu pripisali razpon mogočih vrednosti (npr. IV–V).

Preglednica 1: Seznam potresov leta 2017, ki imajo lokalno magnitudo M_{LV} večjo ali enako 1,5 in smo jim lahko izračunali žariščni čas, koordinati nadžarišča (epicentra) ter globino žarišča. Pri potresih, ki so jih ljudje čutili, je navedena še največja intenziteta. V preglednici je tudi 47 potresov s sicer manjšo lokalno magnitudo, vendar so jih prebivalci Slovenije čutili in smo jim tudi lahko določili osnovne parametre.

Table 1: List of earthquakes with $M_{LV} \ge 1,5$ in 2017, for which the hypocentral time, coordinates of the epicentre and the focal depth were calculated; the maximum intensity of earthquakes that felt by inhabitants is also provided. Information is also included on 47 earthquakes of a lower magnitude, felt by the inhabitants of Slovenia, for which the hypocentral time, coordinates of the epicentre and the focal depth are calculated.

h = focal depth; nst = number of stations used; RMS = the root mean square of time residuals.

												· · · · ·						
	porresno opmocje		epicentral area	Andrej nad Zmincem	Fabci	Snežnik	Podgračeno	Parje	Rupa, meja Hrvaška - Slovenija	Bašelj	Vrh pri Pahi	Brdo	Lehen na Pohorju	Miladini, Hrvaška	Kostanjevica na Krasu	Klokovec, Hrvaška	Selce	Dolnje Ložine
lmax	EMS 98	lmax	EMS 98	zvok	=	zvok	≡	\geq	čutili		> -	=			≡	zvok	≡	≡
2	M	2	M	2,0	1,8	2,3	0,1	1,9	0,9	1,7	0,6	1,0	1,5	1,8	0,9	1,3	1,6	0,8
RMS	S	RMS	v	0,4	0,5	0,5	0	0,5	0,2	0,4	0,6	0,3	0,6	0,6	0,3	0,5	0,4	0,3
4	USU	4	USU	52	41	65	ю	42	4	37	15	22	14	45	11	23	35	9
٩	km	٩	km	19	11	12	7	15	-	12	9	8	8	11	11	13	15	٢
z. dolž.	ĥ	lon	ĥ	14,30	14,33	14,48	15,66	14,22	14,28	14,43	15,21	14,26	15,33	15,62	13,62	15,85	14,18	14,82
z. šir.	N.	lat	N	46,14	45,50	45,59	45,87	45,66	45,46	46,35	45,86	46,33	46,55	45,69	45,84	46,08	45,70	45,70
	S		v	10,9	33,6	23,1	52,4	33,5	18,8	36,0	20,0	30,9	23,4	47,0	59,0	10,7	29,2	54,4
čas (UTC)	ε	time (UTC)	min	22	£	27	32	17	20	55	45	45	29	12	45	38	13	39
	٩		ч	،	11	13	11	18	7	19	13	4	11	9	22	8	15	11
	dan		day	،	-	4	5	ω	10	10	11	19	19	25	25	28	ę	7
datum	mesec	date	month	-	~	~	-	-	~	۲	~	~	-	~	4	4	2	2
	leto		year	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017

	datum			čas (UTC)		z. šir.	z. dolž.	٩		RMS	2	l max	5
	mesec	dan	٩	ε	S	N°	ĥ	km	Ĩ	S	≥ Z	EMS 98	
	date			time (UTC)		lat	lon	٩	4	RMS	2	l max	
ar	month	day	٩	min	S	N.	ĥ	km	ISI	s	∆ ∎	EMS 98	epiceritial area
2	2	13	10	22	25,2	46,06	13,81	15	42	0,4	2,0		Čepovan
2	2	17	0	51	39,3	46,33	13,61	8	42	0,3	1,7		Kal - Koritnica
17	2	17	19	45	20,5	45,52	15,24	-	21	0,5	1,1	≡	Bojanci
17	2	20	19	24	53,8	46,15	15,04	-	1	0,3	0,6	≡	Trbovlje
17	2	21	4	33	32,8	45,70	14,17	12	28	0,3	1,3	≡	Slavina
17	2	25	9	15	14,8	45,80	15,04	8	35	0,5	1,5		Veliki Lipovec
17	e	80	-	26	35,1	45,99	15,41	-	8	0,3	0,3	čutili	Kladje nad Blanco
17	ę	∞	-	23	54,9	45,98	15,41	5	54	0,5	2,0	≥	Gorenje Dole
17	ო	11	-	42	49,7	46,44	14,31	15	60	0,5	2,2	≥	Košutica, meja Avstrija - Slovenija
17	3	11	-	42	53,8	46,45	14,32	12	6	0,4	2,1		Zell-Oberwinkel (Zgornji Kot), Avstrija
17	ç	17	20	46	5,4	45,87	15,53	4	19	0,2	1,1	=	Gorenja Pirošica
17	ę	20	18	13	6,3	45,53	15,17	7	10	0,3	1,0	2	Tanča Gora
17	e	25	18	30	41,6	45,72	15,73	16	42	0,5	1,6		Repišće, Hrvaška
17	ę	25	18	43	46,3	45,73	14,44	16	53	0,4	1,8		Klance
17	e	25	19	80	48,4	46,14	14,38	11	31	0,4	1,0	> -	Rakovnik
17	3	25	19	10	24,1	46,14	14,38	6	21	0,4	0,9	=	Rakovnik
17	ю	25	19	30	23,6	46,15	14,37	10	22	0,3	0,9	=	Dol
17	3	26	3	52	43,0	46,14	14,37	6	18	0,2	0,6	=	Sora
17	3	26	4	20	9,5	46,14	14,37	8	15	0,3	0,5	NI-II	Sora
17	З	26	11	55	22,2	46,13	14,37	6	20	0,2	0,9	NI−II	Sora
17	ę	26	12	18	28,3	46,14	14,37	8	∞	0,1	0,4	≡	Sora

		ax Surfactions	98 epicentral area	Sora	IV Sora	Klenovik, Hrvaška	IV Rakovnik	IV Spodnja Senica	IV Sora	IV Petelinje	Velika Brda	Goropeke	IV Bojanci	I Prvinci, Hrvaška	/ Srednje Pijavško	Velika Štanga	IV Mala sela	/ Zgornji Tuštanj	/ Račja vas	Muta	Poljanica Bistranska, Hrvaška	IV Dolge Njive	
_Ë	EMS	Ĕ	⊳ EMS	9	-III-		- - 9	 6	8	2	5	5	5	2	5	∞	1	8	0	5	7	0	
MS	s S	MS MS	s S),2 0,	0,2),5 2,	0,2	,5 0,),2 0,	,4 1,	1,1	1,1	1,1),5 1,),5 1,),5 1,),5 1,),3 1,),4 1,),4 1,),4),5 2,	
R	1	2	191	13 (14	38	15 (32 (23 (30 (40 (37 (45 (21 (56 (48 (15 (47 (48 (10 (36 (55 (
ч	Ę	ء	r F	8	10	∞	∞	10	6	8	20	10	4	8	e	14	۲	8	8	9	10	13	
dolž.	ĥ	lon	ĥ	4,37	4,37	6,11	4,38	4,38	4,37	4,67	4,12	4,13	5,27	5,45	5,43	4,77	5,30	4,73	5,54	5,16	5,89	4,19	
šir. z.	z	=	z	14	14	27 1	14	15 1.	14 1.	10	78 1.	04	50 1	69	99	04	53 1	12 1.	88	61 1	89	05 1.	
Ż			•	46	46	46	46	46	46	46	45	46	45	45	45	46	45	46	45,	46	45,	46	
	S		S	36,6	22,9	37,3	48,8	39,9	51,7	28,0	8,9	44,6	15,4	19,1	57,7	39,2	18,2	37,7	23,4	40,4	30,5	3,8	
čas (UTC)	ε	ime (UTC)	min	0	43	39	4	9	19	38	37	14	4	7	33	e	44	41	54	37	23	30	
	٩		٩	13	15	4	21	1	21	18	9	6	0	17	21	17	4	18	17	5	9	7	
	dan		day	26	26	28	28	29	31	4	Ø	ø	13	ю	7	15	16	16	17	18	18	26	
datum	mesec	date	month	ε	ę	ę	ę	3	З	4	4	4	4	5	5	5	5	5	5	5	5	5	
	leto		year	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	

da	tum			čas (UTC)		z. šir.	z. dolž.	ų	4	RMS	2	l max	eise and e accutor
Ĕ	esec	dan	٩	ε	S	N°	ĥ	km		s		EMS 98	
Ö	ate			time (UTC)		lat	lon	ء	4	RMS	2	l max	
Ĕ	onth	day	ء	min	S	N.	ĥ	km	ISI	s	∆ N	EMS 98	epicerinal area
	9	4	17	23	47,4	46,08	14,73	7	38	0,4	1,6	≡	Jevnica
	9	10	10	1	6,5	46,12	14,79	7	60	0,4	2,1	≥	Dešen
	9	13	13	39	1,9	46,13	14,37	6	10	0,2	0,7	≡	Sora
	9	16	22	52	52,0	46,27	15,40	12	44	0,5	2,3	> -	Dramlje
	9	17	14	13	43,0	45,90	14,08	16	29	0,3	1,6		Javornik
	7	-	7	6	9,6	46,28	15,07	10	15	0,2	1,2	> -	Topovlje
	7	9	-	30	11,9	45,81	15,22	-	20	0,3	0,9	> -	Petelinjek
	7	9	16	58	33,3	46,05	14,94	80	80	0,5	2,9	N-V	Dolgo Brdo
	7	1	20	34	24,0	45,70	14,18	15	32	0,3	1,5	=	Selce
	7	11	22	2	54,1	45,88	15,19	11	53	0,5	1,9	V-V	Roje pri Trebelnem
	7	23	18	12	48,3	46,05	14,36	17	40	0,4	1,6		Dolenja vas pri Polh. Gradcu
	7	30	.	16	34,3	45,52	15,24	2	74	0,6	2,3	≥	Bojanci
	8	2	12	22	10,2	45,48	14,47	17	31	0,5	1,5		Trstenik, Hrvaška
	8	2	22	14	23,4	46,05	15,13	1	34	0,4	1,8		Jagnjenica
	8	4	5	36	11,7	45,93	14,55	6	38	0,4	1,5		Dobravica
	8	9	8	1	32,6	46,08	15,11	11	51	0,4	2,2	\geq	Zagrad
	8	15	1	52	43,6	45,75	15,02	10	18	0,6	0,7	=	Obrh
	8	21	10	22	48,1	45,49	14,41	12	36	0,5	1,8	Ξ	Klana, Hrvaška
	8	26	14	12	9,8	45,85	15,17	10	12	0,4	0,9	III-IV	Ždinja vas
	8	26	15	57	11,0	46,61	15,25	6	8	0,4	1,5	N-III	Radlje ob Dravi
	8	27	-	42	34,3	45,89	15,19	80	60	0,5	1,7	> -	Mirna vas

	datum			čas (UTC)		z. šir.	z. dolž.	٩		RMS	2	l max	
leto	mesec	dan	q	ε	S	N	ĥ	km	USU	s	M	EMS 98	porresno opmocje
	date			time (UTC)		lat	lon	ء	4	RMS	2	l max	
year	month	day	ч	min	v	Ŷ	ĥ	km	ISU	s	 ₩	EMS 98	epicentral area
2017	8	28	ę	33	28,4	45,84	15,11	15	30	0,6	1,3	2	Jablan
2017	თ	თ	5	0	36,1	45,50	15,24	e	42	0,4	1,7	> -	Bojanci
2017	თ	11	19	24	26,4	46,06	14,99	9	40	0,5	1,5	≥	Stranski Vrh
2017	თ	13	0	39	15,6	45,60	15,32	80	44	0,5	1,4	≥	Kohanjac, Hrvaška
2017	0	13	0	39	17,9	45,60	15,34	12	4	0,5	1,6	≥	Kohanjac, Hrvaška
2017	თ	13	4	42	13,4	45,61	15,31	£	40	0,5	1,5		Otok
2017	6	13	٢	54	54,8	45,60	15,33	ю	18	0,4	1,0	>I-II	Kohanjac, Hrvaška
2017	თ	14	0	46	0,3	45,61	15,31	£	59	0,4	2,0	≥	Otok
2017	6	14	6	30	11,3	45,83	15,57	4	50	0,6	1,9	>I-II	Stojdraga, Hrvaška
2017	თ	17	14	38	17,2	46,21	13,69	16	24	0,2	1,5		Volarje
2017	თ	17	19	6	55,3	45,93	14,61	-	ю	0,3	0,2	≥	Udje
2017	თ	20	0	11	22,3	45,44	14,39	12	28	0,4	1,7		Klana, Hrvaška
2017	o	24	2	26	51,1	46,12	14,79	12	65	0,5	1,9	≥	Dešen
2017	თ	26	19	14	40,4	46,27	13,78	£	84	0,6	2,2	≥	Tolminske Ravne
2017	6	29	13	15	27,9	45,86	15,37	+	8	0,2	1,0	≡	Šentjakob
2017	10	З	1	50	17,6	46,28	14,53	8	68	0,5	2,1	\geq	Ambrož pod Krvavcem
2017	10	8	6	33	17,6	45,62	14,40	16	80	0,5	2,4	\geq	Snežnik
2017	10	8	6	48	17,3	45,62	14,40	16	37	0,4	1,5		Snežnik
2017	10	8	11	18	50,5	45,61	14,40	15	37	0,4	1,8		Snežnik
2017	10	8	11	18	55,7	45,61	14,42	14	17	0,4	1,9	=	Snežnik
2017	10	8	13	4	0,8	45,62	14,40	14	11	0,2	1,4	čutili	Snežnik

	datum			čas (UTC)		z. šir.	z. dolž.	٩		RMS		l max	-
leto	mesec	dan	٩	ε	v	Ň	ĥ	к К	nst	s	N N	EMS 98	potresno opmocje
	date			time (UTC)		lat	lon	ء		RMS	2	l max	con lentred
year	month	day	ء	min	S	Ň	ĥ	km k	191	s	MIC	EMS 98	epicelitial area
2017	10	10	+	32	32,8	45,61	14,40	17	42	0,5	1,5		Snežnik
2017	10	12	21	34	30,6	45,60	14,28	13	20	0,3	1,2	≡	Koritnice
2017	10	13	o	39	21,1	46,04	13,49	17	48	0,4	1,7		Restocina (Raztočno), Italija
2017	10	14	9	40	36,0	45,84	15,27	5	31	0,4	1,3	2	Gorenje Kronovo
2017	10	22	17	47	45,8	45,46	14,36	13	26	0,6	1,8		Klana, Hrvaška
2017	10	25	6	17	37,9	45,90	14,60	6	29	0,5	1,6		Veliki Ločnik
2017	10	27	19	23	28,5	45,60	15,32	5	23	0,6	1,2	=	Kohanjac, Hrvaška
2017	10	27	19	44	37,2	45,60	15,32	7	44	0,5	1,7	≥	Kohanjac, Hrvaška
2017	11	2	13	13	0,2	46,05	14,35	17	33	0,4	1,7		Dolenja vas pri Polh. Gradcu
2017	11	3	20	8	53,2	46,03	15,00	10	46	0,4	1,4	=	Preženjske Njive
2017	11	6	4	12	51,4	46,09	14,55	6	26	0,3	0,9	=	Črnuče, Ljubljana
2017	11	14	22	16	27,9	45,56	14,39	17	54	0,4	2,3	≡	Snežnik
2017	11	16	7	4	2,5	45,88	15,50	7	43	0,4	1,8	N-V	Veliko Mraševo
2017	11	16	7	4	10,3	45,87	15,52	80	7	0,2	1,5		Dolenja Pirošica
2017	11	18	3	22	27,3	45,68	15,20	10	36	0,4	1,2	=	Pribišje
2017	11	22	14	25	5,6	46,00	13,99	14	47	0,4	1,8	NI-III	Srednja Kanomlja
2017	11	23	11	41	53,2	46,46	13,76	16	74	0,4	2,5	> -	Podkoren
2017	11	23	14	23	24,4	45,48	15,23	9	47	0,6	1,7	=	Hrast pri Vinici
2017	11	26	11	58	25,4	45,97	15,33	7	60	0,4	1,9	N	Dolnje Orle
2017	11	30	23	45	19,4	46,26	13,74	9	42	0,5	1,2		Čadrg
2017	12	9	18	24	42,7	45,68	15,59	15	31	0,4	1,9		Celine, Hrvaška

			epiceritial area	Škalce	Plosna, hrvaška	Dolenje pri Jelšanah	Mošanci, meja Hrvaška - Slovenija	Koprivna	Bojanci	Šembije
l	EMS 9	l	EMS 9						=	
2	A N	2	N N	1,5	1,7	0,8	1,5	1,7	1,5	1,8
RMS	S	RMS	S	0,6	0,6	0,3	0,4	0,6	0,6	0,4
1 2 2		2		35	28	9	32	35	29	38
ų	km	٩	km	10	10	5	2	12	4	13
z. dolž.	ĥ	lon	ĥ	15,43	14,54	14,27	15,30	14,74	15,25	14,26
z. šir.	N	lat	N	46,35	45,37	45,51	45,57	46,45	45,51	45,61
čas (UTC)	S		v	36,6	53,5	14,5	5,2	0,8	46,7	35,6
	ε	time (UTC)	min	42	22	5	28	5	48	7
	q		q	16	13	3	12	5	13	10
	dan		day	7	8	6	15	16	17	18
datum	mesec	date	month	12	12	12	12	12	12	12
	leto		year	2017	2017	2017	2017	2017	2017	2017

Za določitev osnovnih parametrov potresov, navedenih v preglednici 1, smo uporabili analize potresov, zapisanih na potresnih opazovalnicah državne mreže v Sloveniji in opazovalnic sosednjih držav ter biltenov iz Avstrije (ZAMG, 2017–2018) in Italije (OGS, 2017). Žariščni čas (čas nastanka potresa), koordinati nadžarišča in žariščno globino smo določili iz časa prihodov vzdolžnega (P) in prečnega (S) valovanja na potresno opazovalnico. Potrese smo locirali s programom HYPOCENTER (Lienert in drugi, 1988; Lienert, 1994). Uporabili smo povprečni hitrostni model za ozemlje Slovenije, določen iz tridimenzionalnega modela za prostorsko valovanje (Michelini in drugi, 1998) in modela za površinsko valovanje (Živčić in drugi, 2000). Potresom, ki smo jim lahko določili le koordinati nadžarišča, smo za žariščno globino privzeli sedem kilometrov (Poljak in drugi, 2000). Lokalno magnitudo M_{LV} potresov smo določili iz največje hitrosti navpične komponente nihanja tal na slovenskih opazovalnicah in oddaljenosti nadžarišča do potresne opazovalnice. V preglednici 1 je navedena povprečna vrednost M_{LV} za opazovalnice v Sloveniji. Največja intenziteta (I_{max}), ki jo je potres dosegel na ozemlju Slovenije, je ocenjena po evropski potresni lestvici (EMS-98).

V preglednici 2 so navedeni bolj oddaljeni (regionalni) potresi, ki so jih čutili tudi v Sloveniji. Niz močnih potresov, ki je leta 2016 prizadel osrednji del Italije, se je nadaljeval tudi leta 2017 (Jesenko, 2017; Jesenko 2018), štiri izmed njih so čutili tudi posamezniki v Sloveniji. Prav tako so prebivalci Slovenije čutili potres, ki se je zgodil pri Bellunu (Italija) in na Krku (Hrvaška).

Podatki o nekaterih močnejših potresih, ki so jih čutili prebivalci Slovenije

Leta 2017 so prebivalci v Sloveniji čutili vsaj 96 potresov, 90 lokalnih in šest regionalnih. Nadžarišča potresov so prikazana na sliki 4. Velikost kroga označuje lokalno magnitudo, barva pa največjo doseženo intenziteto potresa v Sloveniji.

V nadaljevanju so opisani trije potresi, ki so dosegli učinke IV-V EMS-98. Za vsakega izmed teh potresov je prikazana karta intenzitete po naseljih (slike 5–7) z vrisanim instrumentalno določenim nadžariščem. Intenziteta potresa v posameznem naselju je ocenjena na podlagi vprašalnikov o učinkih potresa.

dotum	čas (UTC)	intenziteta	notrocno obmožio		
datum	h.min	EMS-98	potresno obmocje		
data	time (UTC)	intensity			
date	h.min	EMS-98			
18. 1. 2017	9.25	Ш	Capitignano, osrednja Italija		
18. 1. 2017	10.14	III-IV	Capitignano, osrednja Italija		
18. 1. 2017	10.25	III–IV	Capitignano, osrednja Italija		
18. 1. 2017	13.33	II	Barete, osrednja Italija		
8. 8. 2017	20.42	11–111	Krk, Hrvaška		
6. 9. 2017	12.22	Ш	Belluno, severna Italija		

Preglednica 2: Seznam bližnjih (regionalnih) potresov, ki so jih čutili prebivalci Slovenije leta 2016 **Table 2:** List of regional earthquakes that were felt by the inhabitants of Slovenia in 2016.

Vprašalnike po potresu pošljemo prostovoljnim poročevalcem ali pa jih občani sami izpolnijo na spletni strani ARSO (http://www.arso.gov.si/potresi/vprašalnik) in evropske seizmološke organizacije EMSC (http://www.emsc-csem.org). Na sliki 8 so prikazana vsa naselja, od koder smo dobili podatke, da so ljudje čutili učinke katerega izmed teh 96 potresov. Barva in oznaka na sliki opredeljujeta največjo intenziteto, doseženo v posameznem naselju leta 2017. V nadaljevanju so vse navedene magnitude lokalne (M_{IV}).

Slika 4: Nadžarišča potresov, ki so jih leta 2017 čutili prebivalci Slovenije. Barva simbola ponazarja največjo doseženo intenziteto v Sloveniji, njegova velikost pa vrednost lokalne magnitude M_{LV} V primeru razpona mogočih vrednosti intenzitete je prikazana spodnja vrednost.

Figure 4: Epicentres of earthquakes felt in Slovenia in 2017. The size of the symbols represents local magnitude, while the colour represents maximum intensity in Slovenia. Magnituda = magnitude; intenziteta = intensity. Where there is a range of possible intensity values, the lower value is shown. Magnituda = magnitude; intenziteta = intensity.

Potres 6. julija 2017 ob 16.58 UTC pri Litiji (slika 5). Največje učinke (IV–V EMS-98) je potres dosegel v Zagorju ob Savi in Borovaku pri Podkumu. Potres (M_{LV}=2,9) je prestrašil prebivalce, v redkih primerih so se v višjih nadstropjih stanovanjskih blokov, kjer je potres občutiti močneje, prevrnili ali premaknili manjši nestabilni predmeti, posamezniki pa so zbežali na prosto. V Zagorju ga je čutila tudi skupina, ki je takrat na prostem vadila jogo. V Borovaku pri Podkumu so imeli občutek, kot bi se nekaj zaletelo v steno.

Slika 5: Intenziteta potresa magnitude 2,9 pri Litiji 6. julija 2017 ob 16.58 po UTC v posameznih naseljih; a) celotno območje, kjer so potres čutili; b) širše nadžariščno območje

Figure 5: Intensity of the earthquake near Litija (M_{Lv} =2.9) on 6 July 2017 at 16:58 UTC in individual settlements; a) felt area; b) wider epicentral area

nadžarišče = epicentre; čutili = felt; zvok = thunder; niso čutili = not felt.

Potres 11. julija 2017 ob 22.02 UTC pri Šmarjeških Toplicah (slika 6). Prebivalce Srednjega Grčevja, kjer je potres (M_{LV}=1,9) dosegel najvišjo intenziteto (IV–V EMS-98), je prestrašilo srednje močno tresenje tal in škripanje tramov na strehi. Podatke o učinkih potresa so nam sporočili opazovalci na območju do 9 km od nadžarišča. Spremljal ga je nenavaden močan pok, ki je povzročil, da so se prebivalci prebudili, živali pa vznemirile.

Slika 6: Intenziteta potresa magnitude 1,9 pri Šmarjeških Toplicah 11. julija 2017 ob 22.02 po UTC v posameznih naseljih

Figure 6: Intensity of the earthquake near Šmarješke Toplice (M_{LV} =1.9) on 7 July 2017 at 22:02 UTC in individual settlements.

Nadžarišče = epicentre; čutili = felt; niso čutili = not felt.

Potres 16. novembra 2017 ob 07.04 UTC pri Brežicah (slika 7). Potres (M_{LV}=1,8) je največje učinke (IV–V EMS-98) dosegel v Cerkljah ob Krki in Župeči vasi. Močno tresenje tal je prestrašilo ljudi, slišali so tudi zvok, podoben gromu, kar jih je dodatno vznemirilo. Potresu je čez 8 sekund sledil še eden, nekoliko šibkejši. Kljub majhnima magnitudama (1,8 in 1,5) so prebivalci potresa dokaj močno čutili. Prodo-ren zvok je zbegal in prestrašil tudi domače živali.

Slika 7: Intenziteta potresa magnitude 1,8 pri Brežicah 16. novembra 2017 ob 7.04 po UTC v posameznih naseljih **Figure 7**: Intensity of the earthquake near Brežice (M_{LV} =1.8) on 16 November 2017 at 07:04 UTC in individual settlements. Nadžarišče = epicentre; čutili = felt; zvok = thunder; niso čutili = not felt.

Slika 8: Največja intenziteta potresa izmed vseh, ki so se zgodili leta 2017, ocenjena v posameznem naselju *Figure 8*: Overall map of the maximum intensity in individual settlements in Slovenia of all the earthquakes in 2017 felt by the inhabitants of Slovenia. Čutili = felt; zvok = thunder.

Sklepne misli

Leta 2017 smo v Sloveniji ali njeni bližnji okolici zabeležili 2186 potresov. 19 potresov je imelo lokalno magnitudo med 2,0 in 2,9, nobeden pa večjo ali enako 3,0. Večina potresov (97 %) je imela lokalno magnitudo manjšo od 1,7. Vsi potresi na območju Slovenije in bližnje okolice so imeli žarišče do globine 30 km.

V Sloveniji so leta 2017 prebivalci čutili vsaj 96 potresov (sliki 4 in 10). Trije potresi so dosegli intenziteto IV–V EMS-98, 25 potresov intenziteto IV EMS-98, 25 potresov III–IV EMS-98, 30 potresov III EMS-98, trije potresi pa intenziteto II EMS-98. Za preostale potrese (6) nam opazovalci niso poslali dovolj informacij o učinkih, zato jim ni bilo mogoče določiti intenzitete po evropski potresni lestvici. Intenziteta je v tem primeru opisana z oznako *čutili* (3 potresi) oziroma *zvok* (3 potresi), če opazovalci tresenja niso čutili, ampak so le slišali bobnenje (slika 10).

Slika 9: Porazdelitev največje intenzitete (EMS-98) potresov v Sloveniji leta 2017 *Figure 9*: Distribution of the earthquakes in Slovenia in 2017 with respect to maximum EMS-98 intensity.

Makroseizmični podatki za potrese bi bili zelo pomanjkljivi ali celo nedostopni, če nam ne bi pomagali številni prostovoljni poročevalci (2943 izpolnjuje papirne vprašalnike, 1686 pa spletne vprašalnike), za kar se jim najlepše zahvaljujemo. Prostovoljnim opazovalcem smo leta 2017 poslali 4327 makroseizmičnih vprašalnikov za 28 potresov (1730 papirnih in 2597 elektronskih vprašalnikov). Poročevalci so vrnili 1025 izpolnjenih papirnih vprašalnikov (59 odstotkov) in 1208 spletnih vprašalnikov (46 odstotkov). Skupaj (zaprošenih ali poslanih na lastno pobudo) smo prejeli 1952 izpolnjenih spletnih vprašalnikov, med katerimi je bilo:

- 768 poročil, da so zaznali potres,
- 1089 poročil, da niso zaznali potresa,
- 95 prebivalcev je čutilo nekaj drugega (rudniški dogodek, preboj zvočnega zidu letala, promet, veter itn.).

Po letu 2013 dobivamo občutno več poročil, da so prebivalci čutili potres. To lahko pripišemo uvedbi spletne različice vprašalnika, in ne povečani potresni dejavnosti.

Tudi leta 2017 smo pri zbiranju in izmenjavi podatkov sodelovali s seizmologi iz sosednjih držav (Italije, Avstrije in Hrvaške). Zahvaljujemo se jim za poslane oziroma na spletu objavljene makroseizmične podatke.

Literatura

ARSO, 2018. Letni seizmološki bilteni, 1997-2017. Arhiv Agencije RS za okolje, Ljubljana.

- Čarman, M., Živčič, M., 2019. Poročilo o samodejno določenih magnitudah na zapisih potresnih opazovalnic, Potresi v letu 2017. Agencija RS za okolje, Urad za seizmologijo, Ljubljana.
- Grünthal, G. (ur.), 1998. European Macroseismic Scale 1998 (EMS-98). Conseil de l'Europe, Cahiers du Centre Européen de Géodynamique et de Séismologie, Volume 15, Luxembourg.
- Jesenko, T., 2017. Najmočnejši potresi po svetu leta 2016, Ujma 31, 72-77.
- Jesenko, T., 2018. Najmočnejši potresi po svetu leta 2017, Ujma 32.
- Lienert, B. R., Berg, E., Frazer, L. N., 1988. HYPOCENTER: An earthquake location method using centered, scaled, and adaptively least squares. Bull. Seism. Soc. Am., 76, 771–783.
- Lienert, B. R., 1994. HYPOCENTER 3.2 A Computer Program for Locating Earthquakes Locally, Regionally and Globally. Hawaii Institute of Geophysics & Planetology, Honolulu, 70 str.
- Michelini, A., Živčić, M., Suhadolc, P., 1998. Simultaneous inversion for velocity structure and hypocenters in Slovenia. Journal of Seismology, 2 (3), 257–265.
- OGS (Oservatorio Geofisco Sperimentale), 2017. Bolletino della Rete Sismometrica del Friuli Venezia Giulia. OGS, Centro ricerche sismologiche, Udine, computer file. Spletni naslov: http://www.crs.inogs.it/ bollettino/RSFVG/2015/RSFVG-2016.it.html.
- Poljak, M., Živčić, M., Zupančič, P., 2000. The Seismotectonic Characteristics of Slovenia. Pure appl. Geophys., vol. 1, 57, 37–55.
- RGU (Republiška geodetska uprava), 1995. Centroidi naselij (geografske koordinate), računalniški seznam.
- Sinčič, P., Tasič, I., Živčič, M., 2019. Potresne opazovalnice v Sloveniji v letu 2017, Potresi v letu 2017. Agencija RS za okolje, Urad za seizmologijo, Ljubljana.
- ZAMG, 2017–2018. Preliminary bulletin of regional and teleseismic events recorded with ZAMG-stations in Austria. Zentralanstalt für Meteorologie und Geodynamik, Wien.
- Živčić, M., Bondár, I., Panza, G. F., 2000. Upper Crustal Velocity Structure in Slovenia from Rayleigh Wave Dispersion. Pure Appl. Geophys., Vol. 157, 131–146.
- Živčić, M., Čarman, M., Jesenko, T., 2018. Potresna dejavnost v Zasavju v obdobju od 1. decembra 2016 do 24. oktobra 2017. Interno poročilo. ARSO, Ljubljana.

Izidor Tasič, Marko Mali, Luka Pančur, Peter Sinčič, Igor Pfundner, Bojan Uran, Jože Prosen

Delovanje državne mreže potresnih opazovalnic v letu 2017 Seismic Stations Operation in Slovenia in 2017

Povzetek

Abstract

Z glavnimi parametri, ki so vplivali na zanesljivost delovanja Državne mreže potresnih opazovalnic (DMPO) v letu 2017, predstavljamo povzetek analize delovanja in pregled pomembnejših dogodkov. Podajamo število prekinitev komunikacije za posamezno potresno opazovalnico (izpad) glede na trajanje. Za najdaljši izpad na posamezni potresni opazovalnici smo opisali njegov vzrok. Podajamo tudi časovne intervale, znotraj katerih ni delovalo po več potresnih opazovalnic hkrati ter vzroke za omenjeno nedelovanje. Na osnovi rezultatov analize redno poteka tudi razvoj in izvedba posodobitev, ki prispevajo k boljšemu in zanesljivejšemu delovanju DMPO. The results of analysis for operation of Seismic Network of the Republic of Slovenia (SNRS) in 2017 are presented in this article. The main upgrades and events that have influenced the operating quality of SNRS are also presented, along with parameters describing its reliability. The number and duration of out-of-operation periods (OOOP) for all seismic stations were evaluated. The analysis of causes of the longest OOOP for particular seismic station was made. Time intervals, when more seismic stations were out of service simultaneously, are identified. Based on the results of the analysis, improvements are constantly implemented, contributing to better and more reliable operation of SNRS.

Uvod

Državno mrežo potresnih opazovalnic (DMPO) sestavlja 26 sodobno opremljenih digitalnih opazovalnic (slika 1). Vsaka potresna opazovalnica je opremljena z zajemalno enoto in dolgo-periodnim seizmometrom, večina (22) pa tudi s pospeškometrom (glej sliko 1). S pospeškometri smo povečali dinamično območje potresnih opazovalnic, saj omogočajo beleženje večjih amplitud nihanja tal pri močnejših potresih. Poleg seizmološke merilne opreme se na opazovalnicah nahaja še vrsta druge podporne opreme, ki jo lahko razdelimo v štiri sklope: komunikacijska oprema, oprema za zagotavljanje neprekinjene oskrbe z električno energijo, oprema za dodaten nadzor delovanja zajemalnih enot ter oprema za nadzor vdora vode in beleženje temperature ob seizmometru. Glavna naloga Sektorja za potresna opazovanja na Uradu za seizmologijo je neprestano spremljanje delovanja celotne opreme na DMPO in zagotavljanje optimalne kakovosti seizmoloških podatkov ter v največjem možnem obsegu preprečevanje njihove izgube. V ta namen na DMPO izvajamo različne analize, na osnovi katerih izboljšujemo njeno delovanje.

Vsi posegi na DMPO ter rezultati obsežne analize vseh pomembnih parametrov, ki vplivajo na kakovost delovanja DMPO, so podani v internem poročilu Sektorja za potresna opazovanja (SPO, 2017). Le to obravnava naslednje parametre, ki opisujejo kakovost delovanja DMPO:

- · Podroben opis vseh del in posodobitev, ki so bile izvedene na posamezni potresni opazovalnici.
- Število izpadov komunikacije posamezne potresne opazovalnice glede na trajanje izpada. Za daljše izpade (več kot 2 uri), ki niso bili posledica napake na komunikacijah, podajamo tudi njihove vzroke.

- Skupno trajanje izpadov posamezne potresne opazovalnice glede na določen časovni interval ter skupno trajanje izpadov posamezne potresne opazovalnice v določenem mesecu. Rezultati za posamezno opazovalnico so podani v obliki tabel in grafov.
- · Podroben opis izpadov, ki so povzročili izgubo podatkov.
- Število avtomatskih nastavitev mirovne lege seizmometra (za opazovalnice opremljene s tipom seizmometra, ki to funkcijo omogoča).
- Analiza nivoja celotnega seizmičnega nemira (predstavlja kombinacijo naravnih in umetnih seizmičnih izvorov) na posamezni potresni opazovalnici.
- · Časovni potek mirovne lege in napajalne napetosti na posamezni potresni opazovalnici.
- · Časovni potek vrednosti temperature ob seizmometru.
- Analiza vdorov vode v jaške potresnih opazovalnic. Podajamo število vdorov vode in datume omenjenih dogodkov.

V tem prispevku podajamo le pomembnejše točke iz internega poročila (SPO, 2017). Glavne posodobitve, ki smo jih v letu 2017 izvedli na DMPO, pa so naslednje:

- Menjava zajemalnih enot tipa Q730 z novejšimi tipa Q330HRS. Menjavo smo izvedli na potresnih opazovalnicah: DOBS, GBRS, GCIS, GROS, ROBS.
- Menjava zajemalnih enot tipa Q730 z zajemalnimi enotami tipa Centaur na potresnih opazovalnicah LEGS, GOLS in PDKS. Na opazovalnicah GOLS in PDKS smo zamenjali enoto JetBox z enoto Raspberry Pi2.
- Namestitev dodatnega pospeškometra na potresne opazovalnice GBRS, GCIS, JAVS, KNDS in ROBS. Nova zajemalna enota tipa Q330HRS omogoča zajem šestih kanalov, zato smo na omenjenih potresnih opazovalnicah poleg že nameščenega seizmometra namestili še pospeškometer. S tem smo močno povečali dinamično območje potresne opazovalnice ter razširili mrežo potresnih opazovalnic, ki omogočajo beleženje večjih pospeškov.
- Posodobitev komunikacijske opreme na potresnih opazovalnicah KNDS, GCIS in ZAVS. Po novem je nameščen CISCO usmerjevalnik z vgrajenim GSM modemom, ki se v primeru neustreznega delovanja sam ponovno zažene.
- Posodobitev tipa komunikacije na potresnih opazovalnicah GORS in PERS. Najeti vod smo zamenjali z brezžično LTE komunikacijo. CISCO komunikacijska oprema omogoča samodejni ponovni zagon ob nedelovanju.
- Posodobitev komunikacijske opreme na potresnih opazovalnicah KNDS, GCIS in ZAVS. Na omenjene lokacije smo namestili zmogljivejšo komunikacijsko opremo, ki pa še vedno deluje na osnovi GSM omrežja.
- Namestitev nadzornih sistemov. V letu 2013 smo zaradi vdora vode v večje število potresnih opazovalnic razvili aplikacijo (Mali, 2014), ki omogoča detekcijo vdora vode v obeh jaških potresne opazovalnice ter istočasno spremlja temperaturo ob seizmometru (znotraj izolacijske posode). Ob koncu leta 2017 je bilo z nadzornim sistemom opremljenih 21 potresnih opazovalnic. V letu 2017 smo izvajali kontrolo vseh omenjenih sistemov.

Slika 1: Državna mreža potresnih opazovalnic. Prikazana je razporeditev različnih tipov seizmometrov, pospeškometrov in zajemalnih enot po posameznih potresnih opazovalnicah.

Figure 1: Seismic network of the republic of Slovenia (the seismometer, accelerometer and digitizer types and their locations)

Delovanje DMPO v letu 2017

V letu 2017 je bila celotna DMPO opremljena z dodatnimi zunanjimi pomnilniškimi enotami, ki jih imenujemo JetBox. Nekatere opazovalnice smo po novem opremili s podobnimi enotami Raspberry Pi2 (RPi2). S temi pomnilniškimi enotami smo rešili problem trajne izgube podatkov v primeru izpadov komunikacij, daljših od dveh ur (Tasič in sod., 2010).

Do trajne izgube seizmičnih podatkov še vedno lahko pride zaradi daljše prekinitve oskrbe potresne opazovalnice z električno energijo. Z nadgraditvijo napajalnih sistemov (Mali in sod., 2008) je avtonomija delovanja seizmološke opreme najmanj en dan. V letu 2017 smo na potresnih opazovalnicah GCIS, GROS, PERS, KNDS in ZAVS posodobili komunikacijsko opremo, s čimer se je močno izboljšala kakovost komunikacij. Na opazovalnici JAVS pa ostaja nameščen sistem za avtomatski ponovni zagon GSM modema (Mali in sod., 2013). V letu 2017 je bilo 21 potresnih opazovalnic opremljenih z nadzornim sistemom (Mali, 2014). Sistem omogoča nadzor temperature ob seizmometru in v obeh jaških preverja potencialni vdor vode ter v primeru odstopanja parametrov od mejnih vrednosti o tem obvesti dežurnega tehnika.

Na slikah 2a in 2b je prikazan pregled delovanja DMPO v letu 2017, kjer črna oziroma modra barva predstavljata nedelovanje oziroma izpad potresne opazovalnice. Pregled vseh izpadov ter opis najdaljših izpadov za posamezno potresno opazovalnico so podani v preglednicah 1 in 2. Večina daljših izpadov, ki so posledica izpada na komunikacijskih poteh, ne predstavlja več trajne izgube podatkov, ampak le nezmožnost analize morebitnega seizmičnega dogodka v realnem času.

Slika 2a: Pregled delovanja DMPO v letu 2017. Izpadi so označeni s črno barvo. Ločljivost slike omogoča, da so vidni le izpadi, daljši od treh ur.

Figure 2a: An overview of out-of-operation periods (black lines) for seismic network of Slovenia in the year 2017. The resolution allows us to distinguish only out-of operation periods longer than three hours.

Slika 2b: Pregled delovanja DMPO v letu 2017. Izpadi so označeni z modro barvo. Ločljivost slike omogoča, da so vidni le izpadi, daljši od ene ure.

Figure 2b: An overview of out-of-operation periods (blue lines) for seismic network of Slovenia in the year 2017. The resolution allows us to distinguish only out-of operation periods longer than one hour.

Preglednica 1: Skupni podatki o številu izpadov in njihovem trajanju za DMPO v letu 2017. **Table 1:** An overview of the out-of-operation periods (OOOP) for Seismic Network of teh Republic of Slovenia in the year 2017.

oznaka opazovalnice	število vseh izpadov	skupno trajanje vseh izpadov	število izpadov daljših od 2h
station code	number of OOOP	total duration of OOOP	number of OOOP > 2h
BOJS	976	7d 17h 33m	2
CADS	96	7h 32m	2
CEY	139	1d 7h 23m	1
CRES	162	15d 14h 27m	1
CRNS	108	10h 14m	1
DOBS	76	4d 18h 20m	1
GBAS	301	2d 8h 42m	2
GBRS	469	16d 12h 53m	9
GCIS	2147	22d 6h 12m	21
GOLS	1072	3d 9h	1
GORS	213	12h 17m	1
GROS	738	28d 17h 20m	13
JAVS	7861	16d 8h 8m	8
KNDS	5656	57d 23h 56m	20
KOGS	69	1h 58m	0
LEGS	335	33d 5h 55m	3
LJU	191	2d 1h 51m	4
MOZS	137	4h 9m	0
PDKS	91	3h 2m	0
PERS	2098	21d 8h 29m	6
ROBS	66	2h 13m	0
SKDS	404	11d 3h 30m	14
VISS	184	18h 5m	1
VNDS	214	15h 13m	1
VOJS	228	2d 1h 39m	7
ZAVS	5195	47d 23h 53m	16
skupaj	29226		135

oznaka opazovalnice	nastop najdaljšega izpada	trajanje najdaljšega izpada	vzrok najdaljšega izpada
station code	date/time of the longest OOOP	duration of the longest OOOP	cause for the longest OOOP
BOJS	2. 6. / 16.34	6d 16h 7m 13s	udar strele – poškodba Q330 in JetBoxa
CADS	27. 6. / 5.37	2h 16m 14s	izpad na komunikacijah
CEY	8. 8. / 11.08	1d 0h 59m 58s	izpad na komunikacijah
CRES	21. 6. / 3.16	15d 8h 39m 6s	udar strele – poškodovani komunikacijski vodi
CRNS	15. 1. / 13.46	3h 17m 17s	izpad na komunikacijah
DOBS	27. 12 / 8.27	4d 15h 32m 46s	izpad na komunikacijah
GBAS	25. 6. / 14.53	1d 15h 51m 48s	izpad komunikacij, okvara linijske zaščite
GBRS	4. 3. / 19.10	4d 15h 51m 32s	izpad na komunikacijah
GCIS	7. 9. / 12.16	6d 20h 16m 37s	napaka na komunikacijah, napaka na bazni postaji
GOLS	10. 4. / 18.05	1d 14h 45m 25s	udar strele, okvara komunikacijske opreme
GORS	5. 10. / 0.15	2h 35m 58s	izpad na komunikacijah
GROS	31. 10. / 15.09	8d 15h 2m 0s	napaka na komunikacijskih vodih
JAVS	7. 1. / 20.15	23h 53m 13s	izpad na komunikacijah, prevrnjen drog z GSM anteno
KNDS	24. 4. / 17.01	15d 15h 54m 11s	napaka na bazni postaji, posodobitev usmerjevalnika.
KOGS	14. 3. / 9.31	0h 19m 49s	izpad na komunikacijah
LEGS	21. 6. / 3.29	19d 4h 31m 7s	udar strele, okvara komunikacijske opreme
LJU	12. 12. / 2.38	1d 7h 29m 24s	izpad na komunikacijah
MOZS	2. 8. / 18.58	0h 35m 15s	izpad na komunikacijah
PDKS	2. 8. / 20.12	0h 13m 40s	izpad na komunikacijah
PERS	19. 12. / 7.26	10d 3h 25m 34s	napaka na komunikacijskih vodih
ROBS	10. 11. / 9.20	0h 40m 55s	menjava enote Q730 z enoto Q330HRS
SKDS	9. 12. / 10.04	5d 3h 48m 40s	napaka na komunikacijskih vodih
VISS	28. 6. / 18.28	2h 47m 49s	izpad na komunikacijah
VNDS	11. 8. / 7.24	2h 21m 2s	udar strele, okvara enote Q330HRS
VOJS	7. 6. / 9.46	8h 37m 14s	izpad na komunikacijah
ZAVS	20. 4. / 15.36	3d 17h 24m 9s	izpad na komunikacijah

Preglednica 2: Pregled najdaljših izpadov za posamezno potresno opazovalnico DMPO in razlogi zanje. **Table 2:** An overview and causes for the longest OOOP's for each station of the Seismic Network of the Republic of Slovenia in the year 2017.

število opaz./	o dolžina trajanja izpadov / length of downtime							
no. of stations	0–5 min	5–15 min	15–30 min	30–45 min	45–60 min	60–120 min	> 120 min	
2	7584	1329	540	239	145	178	45	
3	3063	455	178	76	41	60	7	
4	1114	125	41	22	10	12	2	
5	382	42	8	7	5	0	0	
6	121	6	2	1	0	0	0	
7	44	2	0	0	0	0	0	
8	21	1	0	0	0	0	0	
9	9	0	0	0	0	0	0	
10	4	0	0	0	0	0	0	
11	0	0	0	0	0	0	0	
12	0	0	0	0	0	0	0	
13	0	0	0	0	0	0	0	
14	1	0	0	0	0	0	0	
15	1	0	0	0	0	0	0	
16	0	0	0	0	0	0	0	
17	2	0	0	0	0	0	0	
18	1	0	0	0	0	0	0	
19	1	0	0	0	0	0	0	
20	1	0	0	0	0	0	0	
21	1	0	0	0	0	0	0	
22	0	0	0	0	0	0	0	
23	0	0	0	0	0	0	0	
24	0	0	0	0	0	0	0	
25	2	0	0	0	0	0	0	
26	24	0	0	0	0	0	0	

Preglednica 3: Število izpadov po dolžini in številu sočasno izpadlih potresnih opazovalnic. **Table 3:** An overview of simultaneous OOOP's for Seismic Network of the Republic of Slovenia.

Na sliki 3 je prikazano skupno trajanje izpadov glede na število sočasno nedelujočih opazovalnic. Posamezna vrednost predstavlja skupno trajanje vseh sočasnih izpadov natanko določenega števila opazovalnic. Stolpci se med seboj izključujejo. Skupno trajanje izpadov v posameznem stolpcu sestavlja več izpadov v katere je bilo vključeno enako število potresnih opazovalnic. Postopek samodejnega lociranja potresa vsebuje ocenjevanje številnih neznank, zato potrebuje podatke čim večjega števila potresnih opazovalnic. Če v trenutku potresa pride do izpada večjega števila potresnih opazovalnic, je določitev potresnih parametrov otežena oziroma manj natančna. Pregled sočasnih izpadov je podan v preglednici 3.

Slika 3: Skupno trajanje izpadov več potresnih opazovalnic hkrati (leto 2017). *Figure 3*: The total duration of OOOP's that occurred at several seismic stations simultaneously (year 2017).

Zaključek

Predstavili smo najpomembnejše posodobitve, ki smo jih v letu 2017 izvedli na DMPO in povzetek analize delovanja DMPO v letu 2017. Ugotovili smo, da se izpadi (prekinitve v komunikaciji s posamezno potresno opazovalnico) pojavljajo neprestano. Medtem, ko je vzrok krajših izpadov vedno manjša napaka na komunikacijah, pa so vzroki daljših izpadov raznovrstni. V grobem jih lahko delimo v tri skupine. V prvi skupini so problemi v zvezi z dobavo električne energije. V drugo skupino sodijo izpadi, ki so povezani s komunikacijsko potjo in opremo. V tretjo skupino pa uvrščamo okvare na seizmološki opremi (okvare na seizmometrih in zajemalnih enotah). S podpornimi sistemi, ki jih razvijamo in dopolnjujemo ter z rednimi posodobitvami in testiranji seizmološke merilne opreme, zmanjšujemo število in dolžino izpadov zaradi vseh naštetih vzrokov. Največjo pozornost seveda namenjamo preprečitvi okvar na seizmološki merilni opremi.

Podali smo tudi analizo izpadov več potresnih opazovalnic hkrati. Posebno pozornost smo namenili predvsem tako imenovanim kritičnim izpadom, pri katerih več kot 75 % potresnih opazovalnic oziroma 20 ali več potresnih opazovalnic izpade za več kot 5 minut. Ugotovili smo, da v letu 2017 tovrstnih izpadov ni bilo.

Rezultati analiz delovanja opreme so nam v veliko pomoč tudi pri nadaljnjem delu. Na njihovi osnovi vsakoletno izluščimo najpogostejše napake, ki povzročijo posamezen izpad oziroma so vzrok za slabšo kvaliteto zajetih seizmičnih signalov. S pomočjo teh spoznanj izboljšujemo opremo in postopke na mreži potresnih opazovalnic in tako izboljšujemo njeno delovanje ter preprečujemo morebitno škodo.

Literatura

Mali, M., 2014. Nadzorni sistem za kontrolo nivoja vode in stabilnosti temperature, Potresi v letu 2013, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.

- Mali, M., Tasič, I., Pančur, L., 2013. Nadgradnja kontrole modemske komunikacije Arduino Uno, Potresi v letu 2012, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Mali, M., Tasič. I., 2011. Vpliv temperaturnih sprememb na delovanje dolgoperiodnih seizmometrov, Potresi v letu 2010, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Mali, M., Tasič, I., Pančur. L., 2008. Vpliv brezprekinitvenega napajanja na delovanje potresne opazovalnice. Potresi v letu 2007, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Tasič. I., Pančur L., Pfundner, I., Mali, M., 2010. Povečanje lokalnega pomnilnika za zajemalne enote Q730, Potresi v letu 2009, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Tasič. I., Mali, M., Pančur L., 2011. Temperaturna stabilnost potresne opazovalnice, Potresi v letu 2010, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- SPO, 2017. Državna mreža potresnih opazovalnic, delovanje v letu 2017, interno poročilo, Ljubljana.

Martina Čarman, Mladen Živčić

Poročilo samodejno določenih magnitud na zapisih potresnih opazovalnic Report of automatically defined magnitudes from seismic stations records

Povzetek

Urad za seizmologijo, ARSO, v realnem času zajema seizmične zapise Državne mreže potresnih opazovalnic (DMPO). Podatki se stekajo v računalniško središče, ki je opremljeno s programsko opremo za samodejno določanje žariščnega časa, lokacije in magnitude potresa v realnem času. V letu 2018 je bil vzpostavljen dopolnilni sistem, ki v realnem času samodejno pripravi »Poročilo o samodejno izračunanih magnitudah na zapisih potresnih opazovalnic«. To poročilo dežurnemu seizmologu pove, katere opazovalnice so sodelovale pri izračunu in kakšna so odstopanja magnitud na posameznih opazovalnicah od povprečne vrednosti oz. mediane. Seizmolog lahko iz poročila razbere, če je prišlo do prekrmiljenja sistema in s tem popačenja zapisov.

Abstract

Seismology Office of Slovenian Environment Agency is acquiring seismic records of Slovenian seismic network in real time. Data are collected into the computer center, equipped with a computer software for automatic real-time calculation of earthquake origin time, epicentre and local magnitude. In 2018, the additional software, which prepares the "Report of automatically calculated magnitudes from seismic stations records" in real time, was applied. The report gives the seismologist a detailed insight into which stations were involved in the calculation and what are the deviations of the magnitude of the individual stations from the average or median value. The report enables the seismologist to find out if the system was clipped and the records were skewed.

Uvod

Magnituda (Lapajne, 2013), ki jo samodejna analiza seizmičnih zapisov v realnem času ponudi seizmologu, je ena sama vrednost in predstavlja povprečno vrednost oz. aritmetično sredino magnitud, izračunanih na zapisih posameznih opazovalnic. Do leta 2018 je moral seizmolog tej vrednosti slepo verjeti, saj so se v postopku izgubile številne informacije, s katerimi bi si lahko ustvaril mnenje o kvaliteti ocene magnitude oz. ali izračunu sploh lahko zaupa. Poleg tega smo magnitude samodejno računali samo iz zapisov seizmometrov. Sicer zelo občutljive naprave za zapisovanje šibkih in zmernih potresov imajo pri močnem potresu zapis na potresu bližnjih opazovalnicah pogosto prekrmiljen. Magnituda, izračunana iz prekrmiljenih zapisov, je podcenjena. To težavo lahko danes obidemo, saj smo s posodobitvijo Državne mreže potresnih opazovalnic v letih 2014-2018 (Tasič in Mali, 2018) na vse potresne opazovalnice poleg že nameščenih seizmometrov namestili tudi pospe-škometre, naprave za beleženje močnih tresljajev. Tako smo s postavitvijo obeh instrumentov na isto lokacijo povečali obseg nihanja tal, ki ga še lahko nepopačeno beležimo, kar v praksi pomeni, da lahko magnitudo v primeru prekrmiljenih zapisov seizmometra izračunamo iz zapisov pospeškometra.

V nadaljevanju je opisano »Poročilo o samodejno izračunanih magnitudah na zapisih potresnih opazovalnic«. Postopek samodejne priprave tega poročila v realnem času smo uvedli leta 2018.

Lokalne magnitude izračunane na posameznih potresnih opazovalnicah

Za potrese v Sloveniji in okolici določamo lokalno magnitudo, M_{LV}, na posamezni potresni opazovalnici iz navpične komponente zapisa hitrosti nihanja tal. Za vse opazovalnice uporabljamo enako enačbo, in sicer

$$M_{LV} = \log(A/T)_{max} + 1,52 * \log(r_{hypo}) - 3,2$$

kjer *A* predstavlja amplitudo premika tal v nanometrih, *T* nihajni čas nihaja z amplitudo *A* v sekundah in r_{hypo} žariščno oddaljenost opazovalnice v kilometrih. Pri tem nas zanima največja vrednost ulomka (*A*/*T*)_{*max*}. Dobimo jo tako, da odčitamo največjo amplitudo na zapisih hitrosti, označeno z $v_{\rho,p}$, in uporabimo še naslednjo relacijo:

$$(A/T)_{max} = \frac{v_{P-P}}{4*\pi}$$

Odčitavanje največjih amplitud izvajamo z gradniki programskega paketa Antelope (Boulder Real Time Technologies, 2017) in lastnim programom. V postopku uporabimo tako navpične zapise hitrosti kot navpične zapise pospeškov nihanja tal, le da slednje najprej integriramo po času v zapise hitrosti. Največjo amplitudo hitrosti nihanja tal iščemo od časa vstopa prečnega valovanja (Sg) na opazovalnico, v časovnem oknu, ki je enak trikratni časovni razliki med vstopoma vzdolžnega (Pg) in prečnega (Sg) valovanja na opazovalnico. Ko iz zapisa odčitamo največjo amplitudo hitrosti nihanja tal, to še popravimo s faktorjem za odziv instrumenta pri periodi, ki ustreza največjemu nihaju. S to vrednostjo in žariščno oddaljenostjo opazovalnice lahko izračunamo lokalno magnitudo.

Nadalje, vse izračune lokalnih magnitud na posameznih opazovalnicah zajamemo v poročilo. Na sliki 1 je prikazano poročilo za potres 25. decembra 2018 ob 18.25 UTC pri Mokronogu. V poročilu sta najprej izpisani dve preglednici. Levo je preglednica za odčitke iz akcelerogramov, desno pa iz seizmogramov. V vsaki preglednici so izpisane naslednje vrednosti: opazovalnica (STAT), komponenta (CHAN), čas odčitka največje vrednosti $v_{(P-P)}$ (HRMM SECON), amplituda (*A*), perioda (*T*), žariščna oddaljenost (r_{hypo}) in magnituda (M_{LV}). Pod črto obeh preglednic sta izpisani dve srednji vrednosti, prva je aritmetična sredina s standardnim odklonom, druga pa mediana.

Aritmetična sredina je vsota vseh magnitud, deljena s številom vseh vrednosti, medtem ko mediana predstavlja magnitudo, pri kateri je polovica vrednosti manjših ali enakih, druga polovica pa večjih od nje, z drugimi besedami je to srednja vrednost. V primeru sodega števila podatkov za vrednost mediane vzamemo aritmetično sredino srednjih dveh vrednosti. Prednost mediane je neobčutljivost na osamelce ali ekstremne vrednosti, kar ne velja za aritmetično sredino. Ta se v primeru ekstremnih vrednosti pomakne v njihovo smer in to tem bolj, čim bolj so oddaljene.

Za lažjo predstavo in hitrejše odkrivanje odstopanj sta pod izpisom izrisana še ustrezna grafa. Prvi predstavlja odvisnost lokalnih magnitud M_{LV} na posamezni opazovalnici od žariščne oddaljenosti r_{hypo} , drugi pa vrednost $(A/T)_{max}$ v odvisnosti od r_{hypo} na logaritemski skali z osnovo 10. Na vseh grafih so izrisane vrednosti mediane.

Potres 25. 12. 2018 ob 18:25:42.074 UTC

Slika 1: Poročilo samodejno določenih lokalnih magnitud na zapisih potresnih opazovalnic *Figure 1*: Report of automatically defined local magnitudes from seismic stations records

Zaključek

Seizmolog nekaj deset sekund po močnem potresu že dostopa do »Poročila samodejno določenih lokalnih magnitud na zapisih potresnih opazovalnic« in tako lažje ovrednoti, če je izračunana srednja vrednost ustrezna.

Literatura

- Boulder Real Time Technologies, inc. (online), 2017. Antelope Real Time System. Dostopno na naslovu: http://www.brtt.com/ (uporabljeno 12. 9. 2018).
- Lapajne, J. K., 2013. Inženirsko seizmološki terminološki slovar [Elektronski vir], Zbirka Termania. Agencija RS za okolje. Izdajatelj: Agencija RS za okolje. Založnik: Amebis, Kamnik; Agencija RS za okolje, Ljubljana. Način dostopa (URL): http://www.termania.net/slovarji/131/seizmoloski-slovar
- Tasič, I., Mali, M., 2018. Posodobitev državne mreže potresnih opazovalnic s pospeškometri. Potresi v letu 2016, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.

Martina Čarman, Mladen Živčić

Analiza vršnih pospeškov tal na potresnih opazovalnicah v Sloveniji Analysis of Peak Ground Acceleration at Slovenian Seismic Stations

Povzetek

Minuto ali dve po močnejšem potresu prejme dežurni seizmolog analizo vršnih pospeškov tal na potresnih opazovalnicah, s katero lahko hitro oceni učinke potresa ter pravočasno in pravilno ukrepa v primeru izrednih dogodkov. Z analizo smo začeli leta 2018, ko je bila končana posodobitev Državne mreže potresnih opazovalnic, pri kateri so bili na vse opazovalnice poleg seizmometrov nameščeni še pospeškometri.

Abstract

Paper describes the methodology of evaluating peak ground acceleration values, used in ARSO since 2018. A couple of minutes after a strong earthquake, seismologist-on-duty receives PGA values recorded on seismic stations, evaluates earthquake intensity and decides about further actions, if necessary.

Uvod

Analiza potresnih parametrov v realnem času je pomembno orodje za pravočasno poročanje o potresu, v primeru močnega potresa pa omogoča hitro oceno posledic potresa in učinkovito ukrepanje sil za zaščito, reševanje in pomoč.

Današnja Državna mreža potresnih opazovalnic (DMPO) je bila postavljena v letih 2002–2006. Obenem je bilo leta 2002 vzpostavljeno tudi središče za zajem, analizo, arhiviranje in izmenjavo podatkov v Ljubljani (Kobal in drugi, 2006). Zajemu podatkov sledi samodejna analiza zapisov in v primeru potresa tudi izračun lokacije, žariščnega časa potresa in njegove magnitude. Ti parametri so ključni za hitro obveščanje javnosti o potresu, vendar ne zadoščajo za oceno dejanskega obsega učinkov ob močnem potresu. Prvi korak v tej smeri smo naredili s samodejnim izračunom vršnih pospeškov tal, izrisom vrednosti na zemljevid in pošiljanjem te informacije pripravljenemu seizmologu.

Karta vršnih pospeškov tal

Pri posodobitvi Državne mreže potresnih opazovalnic v letih 2014–2018 (Tasič in Mali, 2018) smo med drugim poleg že nameščenih seizmometrov (tipal hitrosti nihanja tal) na vse potresne opazovalnice namestili tudi pospeškometre (tipala pospeškov nihanja tal). Seizmometer lahko zabeleži izredno majhna nihanja tal, a pri močnih potresih amplituda nihanja tal včasih preseže merilno območje seizmometra. Pospeškometer je manj občutljiv za šibke potrese, lahko pa meri močnejša nihanja tal. Tako s postavitvijo obeh instrumentov na isti lokaciji povečamo razpon amplitud nihanja tal, ki jih lahko beležimo.

Postavitev pospeškometrov je omogočila analizo vršnih pospeškov tal (ali maksimalnih pospeškov tal ali PGA kot kratica za Peak Ground Acceleration) takoj po močnem potresu. Vršni pospešek tal je največja absolutna vrednost zapisa pospeška na akcelerogramu. Odčitavanje PGA vrednosti izvajamo s programom dbwfmeas iz programskega paketa Antelope (Boulder Real Time Technologies, 2017). Pred odčitkom

PGA zapise najprej filtriramo. Omejimo se na frekvenčno območje med 0,1 Hz in 20,0 Hz, ker so učinki potresa na grajeno okolje pri višjih oz. nižjih frekvencah zanemarljivi in za izbran namen nezanimivi. Če z opazovalnice iz kakršnega koli vzroka nismo uspeli zajeti akcelerograma, imamo pa seizmogram, torej zapis hitrosti, in ga, če ni prekrmiljen, uporabimo. Zgornji postopek je enak, le da v tem primeru program dbwfmeas zapis hitrosti najprej odvaja po času v zapis pospeškov. V realnem času merimo vrednosti PGA na horizontalnih komponentah zapisov.

Največje vrednosti PGA, izmerjene na posameznih opazovalnicah, zrišemo na zemljevid. Na sliki 1 so prikazane vrednosti za potres 1. novembra 2015 ob 7.52 UTC na Gorjancih. Poleg posamezne opazovalnice je na zemljevidu zapisana večja vrednost PGA (v tisočinkah zemeljskega težnega pospeška, v mg) izmed obeh odčitanih na horizontalnih komponentah. Opazovalnica je označena s kvadratkom, če je bila vrednost PGA odčitana z akcelerograma, medtem ko trikotnik označuje vrednost odčitano z seizmograma. Barva oznake ustreza vrednosti log(PGA[mg])/0,3, kar približno ustreza intenzitetam po EMS-98 lestvici. Analiza relacije med intenzitetami po EMS-98 in vrednostmi PGA je v teku. Ko bo narejena, jo bomo uporabili pri izrisu slike.

Seizmolog kakšno minuto ali dve po močnem potresu že dostopa do slike, s pomočjo katere lažje oceni jakost tresenja tal, se lažje odloči za nadaljnje korake ter ukrepa hitreje.

V kasnejših dodatnih analizah lahko izračunamo tudi vrednosti PGA na vertikalnih komponentah, izberemo drug filter, spremenimo druge parametre ali na sliko dorišemo intenzitetne točke. Dodamo lahko tudi podatke opazovalnic, katerih zapisov ne zajemamo v realnem času.

Slika 1: Analiza vršnih pospeškov tal predstavljena na zemljevidu. Nadžarišče potresa je označeno z rdečim X.

Figure 1: Map presentation of peak ground acceleration analysis. Epicenter is marked with red X.

Da se izognemo seizmičnemu nemiru zaradi prometa, industrije in druge človeške dejavnosti, se opazovalnice DMPO praviloma nahajajo izven naselij in so odmaknjene od prometnic ter industrijskih objektov. Če lokacija omogoča, so zgrajene na trdi kamninski podlagi, saj tako izboljšamo občutljivost opazovalnice. Zato ocena učinkov potresa, narejena na podlagi vršnih pospeškov tal z opazovalnic DMPO, ni nujno realna in reprezentativna za dogajanja v urbanih okoljih, ki so pogosto zgrajena na tleh, na katerih so učinki potresa močnejši. Za realnejšo oceno učinkov potresa je treba imeti gostejšo mrežo opazovalnic s senzorji pospeškov, še posebej v urbanih okoljih in v bližini pomembnih infrastrukturnih objektov.

Zaključek

Opisana analiza vršnih pospeškov tal na potresnih opazovalnicah predstavlja prvi korak na poti do samodejne izdelave kart tresenja tal, ang. shake maps (Wald in drugi, 1999). Karte tresenja tal so pomembno orodje pri oceni prizadetega območja, kjer je nastala gmotna škoda ter so morda ogroženi ljudje in živali. Omogočajo učinkovit odziv sil za zaščito, reševanje in pomoč.

Literatura

- Boulder Real Time Technologies, inc. (online), 2017. Antelope Real Time System. Dostopno na naslovu: http://www.brtt.com/ (uporabljeno 12. 9. 2018).
- Kobal, M., Čarman, M., Kolar, J., Pahor, J., Živčić, M., 2006. Zajem in procesiranje seizmoloških podatkov s programskim paketom Antelope. Potresi v letu 2004, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Tasič, I., Mali, M., 2018. Posodobitev državne mreže potresnih opazovalnic s pospeškometri. Potresi v letu 2016, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Wald, D., Quitoriano, V., Heaton, T., Kanamori, H., Scrivner, C., Worden, C., 1999. TriNet ShakeMaps: rapid generation of peak ground motion and intensity maps for earthquakes in southern California. Earthquake Spectra 15, 537-556.

Razločevanje med naravnimi in umetnimi potresi Discrimination Between Natural Earthquakes And Man-made Seismicity

Povzetek

V katalogu potresov za Slovenijo in bližnjo okolico so poleg naravnih potresov, ki nastanejo zaradi premikov kamnin vzdolž preloma, vključeni tudi potresi, ki jih povzroči človekova dejavnost. Med slednje dogodke uvrščamo predvsem razstreljevanja. Če te dogodke obravnavamo kot naravne potrese, lahko to pripelje do napačnih ugotovitev tako pri oceni potresne nevarnosti kot pri raziskavah aktivnih prelomov in drugih študijah.

V prispevku so predstavljene značilnosti pojavljanja lokalnih naravnih potresov in razstreljevanj v letu 2017 ter opisani različni pristopi za razločevanje izvora lokalnih dogodkov.

Abstract

Seismicity triggered by human activity is included in the earthquake catalogue of Slovenia and its surroundings, along the tectonic earthquakes resulting from cracks and movements of rocks along the fault. Most of the man-made events are blastings. If these events are misidentified as earthquakes, this may lead to incorrect conclusions in the assessment of seismic hazard and in the research of active faults and other studies.

In this paper, statistical analyses show the characteristics of the occurrence of tectonic earthquakes and man-made events in 2017 and various approaches are used to distinguish the origin of local events.

Uvod

Razločevanje med naravnimi in umetno povzročenimi potresi, predvsem razstreljevanji, v praksi ni vedno enostavno.

Potresno valovanje nastaja v žarišču potresa in se skozi kamnine razširja do potresne opazovalnice, kjer ga zabeležimo s tam nameščenimi instrumenti. Zapis potresnega valovanja je odraz dogajanja v žarišču potresa in lastnosti kamnin, skozi katere se valovanje razširja. Žariščni mehanizmi naravnih potresov, ki nastajajo ob premiku kamnin vzdolž preloma, niso enaki žariščnim mehanizmom umetnih potresov, ki nastanejo s proženjem razstreliva. Zaradi tega se zapis potresnega valovanja, zajetega v neposredni bližini naravnega potresa, razlikuje od zapisa razstreljevanja. Z oddaljevanjem opazovalnice od žarišča se vpliv kamnine, skozi katero se valovanje razširja, veča in že pri oddaljenosti nekaj kilometrov sta si zapisa zelo podobna, posebej če je žarišče potresa plitvo. Opazovalnice Državne mreže potresnih opazovalnic (DMPO) v Sloveniji so postavljene v mirno okolje. Lokacije so izbrane tako, da so čimbolj oddaljene od vseh virov tresenja, npr. povzročenega s prometom ali industrijsko dejavnostjo (Jesenko in Živčić, 2001), saj le tako lahko z večjo verjetnostjo zabeležimo tudi šibke potrese. Posledica tega je, da v bližini aktivnih kamnolomov, ki so glavni vir razstreljevanj v Sloveniji, ni potresnih opazovalnic, kar otežuje zanesljivo prepoznavanje umetno povzročenih potresov.

Velikokrat pri analizi seizmičnih zapisov posumimo na razstreljevanje. V takih primerih prepoznamo značilne vzorce seizmičnih zapisov, prav tako nam sum vzbujata še čas dogodka, če ta sovpada z dnevnimi urami, med 7. in 19. uro, na delovni dan, in lokacija dogodka, če se zgodi v bližini aktivnega kamnoloma (Rudarska knjiga na naslovu https://ms.geo-zs.si/). Do sedaj so nam bili v veliko pomoč nekateri koncesionarji in izvajalci razstreljevanj, ki so nas redno obveščali o razstreljevanjih. V katalogu potresov ta razstreljevanja seizmologi označimo kot potrjeno razstreljevanje (LE). V primeru, da iz seizmičnega zapisa potresnih opazovalnic ni nedvomno razvidno, da gre za naravni potres, temveč domnevamo, da gre za razstreljevanje, dogodek označimo kot verjetno razstreljevanje (LP).

Rudniških dogodkov v nadaljevanju ne obravnavamo, ker je v Sloveniji leta 2017 deloval le premogovnik Velenje (http://www.rlv.si/si/dejavnosti/tehnicne-sluzbe/seizmika/), in te dogodke običajno prepoznamo že z analizo seizmičnih zapisov najbližje potresne opazovalnice.

V nadaljevanju so predstavljene značilnosti pojavljanja lokalnih naravnih potresov in razstreljevanj v letu 2017 ter opisana dva različna statistična pristopa, s katerima smo iskali razstreljevanja, ki smo jih napačno označili za naravne potrese.

Vhodni podatki

V katalogu potresov za leto 2017 (ARSO, 2017) je 2188 naravnih lokalnih potresov (od tega 19 brez ocenjene magnitude, 223 brez lokacije) in 518 razstreljevanj (od tega 14 brez ocenjene magnitude, 17 brez lokacije) z nadžariščem v Sloveniji ali neposredni bližini. Porazdelitev magnitude za obe vrsti dogodkov je prikazana na sliki 1. Ocenjujemo, da z DMPO zabeležimo vse naravne potrese z magnitudo MLV vsaj 0,6. Vseh šibkejših naravnih potresov z žariščem v Sloveniji ali neposredni bližini pa zaradi prevelike oddaljenosti opazovalnic od potresnih žarišč ali zaradi seizmičnega šuma okolice ne zaznamo. Delež nezabeleženih potresov se veča z nižanjem magnitude. Leta 2017 je 47 % vseh zabeleženih naravnih lokalnih potresov imelo magnitudo M_{LV} = 0,6 ali večjo.

Medtem, ko v primeru naravnih potresov stremimo k analizi vsega, kar je vidno na seizmogramu, pa razstreljevanja večinoma samo označimo, podrobneje analiziramo le močnejša med njimi in še ta le na zapisih bližnjih opazovalnic. Kljub temu, da vsa razstreljevanja niso analizirana, pa lahko razberemo glavne značilnosti njihovega pojavljanja.

Slika 1: Porazdelitev magnitud za lokalne potrese in razstreljevanja v katalogu potresov za leto 2017. *Figure 1*: Magnitude distribution for local earthquakes and explosions in the earthquake catalogue for 2017.

Časovna os pojavljanja lokalnih potresov in razstreljevanj

Na sliki 2 so izrisane tri porazdelitve lokalnih potresov in razstreljevanj za leto 2017, in sicer dnevna po urah, tedenska po dnevih v tednu in letna po mesecih. Vsi časi predstavljajo lokalni čas v Sloveniji, t. j. srednjeevropski oz. srednjeevropski poletni čas. Pričakovali bi, da narava ne sledi našemu koledarju in da se posledično potresi dogajajo enakomerno glede na uro v dnevu, dan v tednu in mesec v letu. Vzrok za neenakomerno porazdelitev leži v človekovi dejavnosti, ki je ponoči ter med vikendom bistveno manjša, in v popotresnih nizih, ki sledijo močnim potresom.

Iz 24-urne porazdelitve naravnih lokalnih potresov in razstreljevanj za leto 2017 na sliki 2 zgoraj lahko vidimo, da je ponoči zabeleženih bistveno več potresov kot podnevi. Razliko med dnevom in nočjo prispevajo predvsem šibki potresi ($M_{Lv} \le 0.5$), saj se močnejši potresi ($M_{Lv} > 2,5$) pojavljajo skoraj enakomerno v 24 urah. Šibkejši potresi pa so pogosteje zabeleženi v nočnih kot v dnevnih urah zaradi manjšega nemira – ponoči je bistveno manj prometa in večji delež pridelovalne industrije ne obratuje – in posledično večje občutljivosti potresne opazovalnice za šibkejše potrese.

Porazdelitev potresov po dnevu v tednu je prikazana na srednjem histogramu slike 2. Močnejši potresi se pojavljajo vse dni v skoraj enakem številu. Nekoliko večje število beležimo le v sredo in ga lahko pripišemo sredinima potresnima nizoma 9. avgusta 2017 ter 15. novembra 2017 pri Reki na Hrvaškem. Tudi dve nedelji sta bili zaznamovani z večjim nizom potresov, prvič 9. julija 2017 s potresi pri Pivki in drugič 8. oktobra 2017 s potresi zahodno od Babnega Polja. V soboto in nedeljo je bilo v primerjavi z delovnimi dnevi zaradi manjšega nemira zabeleženo tudi večje število šibkih potresov.

Spodnji histogram slike 2 prikazuje porazdelitev dogodkov po mesecih leta 2017. Vidimo lahko, da je bila druga polovica leta 2017 potresno aktivnejša v primerjavi s prvo polovico, vendar značilnih odstopanj ni, saj tudi močnih potresov v tem letu ni bilo.

Razstreljevanja sledijo delavniku. Razstreljevanja se dogajajo v dnevnem času, dvomljiva so le tista, ki so se zgodila med 19. uro zvečer in 7. uro zjutraj. Zavedati se moramo, da lahko nekatere plitve naravne potrese razglasimo za umetne in tako napačno opredelimo potresno aktivnost v nekaterih delih Slovenije. Tudi v srednjem histogramu slike 2, ki prikazuje število dogodkov po dnevu v tednu, najdemo pet nedelj-skih domnevnih razstreljevanj. Vendar pri ponovnem pregledu seizmičnih zapisov teh dogodkov nobenega izmed njih nismo prepoznali kot potres.

Z veliko gotovostjo lahko trdimo, da razstreljevanj v sredo ni bistveno več kot ostale delovne dni. Skoraj vse srede leta 2017 je namreč seizmične zapise analiziral isti seizmolog, ki je razstreljevanja analiziral pogosteje in vestneje kot ostali. Druge dneve v tednu so se seizmologi menjavali.

Prostorsko in časovno sito

Pri analizi seizmogramov in pripravi dnevnega biltena smo vedno pozorni na dogodke, ki so locirani v bližini kamnolomov, natančneje na tiste, ki so od najbližjega oddaljeni manj kot 3 kilometre. Neprepoznana razstreljevanja smo želeli ujeti tudi skozi sito, ki poleg bližine kamnolomov upošteva še časovne značilnosti pojavljanja razstreljevanj, ki smo jih spoznali v prejšnjem poglavju, ter še kakšno značilnost razstreljevanj. Pripravili smo algoritem, s katerim lahko iščemo dogodke, ki se zgodijo v dnevnem času med 7. in 19. uro, katerikoli dan v tednu razen v nedeljo, pri tem pa nobena polariteta prvega vstopa ni dilatacija, ker je pri zapisih razstreljevanj prvi vstop vedno kompresija.

Slika 2: Časovne porazdelitve zabeleženih naravnih lokalnih potresov in razstreljevanj v letu 2017; zgoraj dnevna porazdelitev po urah, v sredini tedenska porazdelitev po dnevih v tednu, spodaj letna po mesecih. *Figure 2*: Time distribution of local earthquakes and explosions in the earthquake catalogue for 2017; above - the daily distribution by hours, in the middle - the weekly distribution by day of the week, below - the annual distribution by month.

Ta algoritem smo uporabili na katalogu potresov za leto 2017, v katerem 2466 lokalnih dogodkov z ocenjeno lokacijo, med njimi 68 dokumentiranih razstreljevanj (LE), 433 verjetnih razstreljevanj (LP) in 1965 naravnih potresov. Vse dogodke v katalogu smo presejali po zgornjih kriterijih in prešteli, koliko potresov in koliko verjetnih razstreljevanj (LP) je oddaljenih do 1 km, 2 km ... od kamnoloma. Dopustno razdaljo od kamnoloma do lokacije dogodka smo spreminjali. Rezultati so izpisani v preglednici 1.

Na prvi pogled izgleda, kot da pri opisanem algoritmu velik delež (kar 34 %) verjetnih razstreljevanj še vedno pade skozi sito. Vendar se moramo pri uporabi tega algoritma zavedati, da se razstreljevanja

zagotovo ne dogajajo le znotraj kamnolomov (Rudarska knjiga na naslovu https://ms.geo-zs.si/), temveč tudi pri drugih posegih v naravo, npr. pri obnovi ali gradnji novih vozišč. Z zgornjim algoritmom so nam ušla tudi razstreljevanja na obmejnih območjih sosednjih držav, predvsem na Hrvaškem, v Avstriji in Italiji, ker ne poznamo lokacij in aktivnosti tamkajšnjih kamnolomov. Predvsem na Hrvaškem smo zabeležili približno 100 dogodkov, za katere domnevamo, da so razstreljevanja (LP).

Preglednica 1: Število naravnih potresov (L) in število možnih razstreljevanj (LP), ki so se zgodili glede na oddaljenost dogodka od najbližjega kamnoloma med 7. in 19. uro po lokalnem času vse dni v tednu, razen v nedeljo. Pri štetju izločimo tudi dogodke, pri katerih je polariteta prvega vstopa na katerikoli opazovalnici dilatacija.

Table 1: Number of earthquakes (L) and possible explosions (LP) occurring with respect to the distance from the nearest quarry between 7am and 7pm local time every day of the week, except Sunday. Events where the polarity of the first phase on any seismic station is a dilatation are not included

Največja oddaljenost dogodka do najbližjega kamnoloma v km	Potres (L)	Verjetno razstreljevanje (LP)	Razstreljevanje (LE)	Skupno število
1	1	105	20	126
2	3	212	67	282
3	6	252	67	325
4	13	268	67	348
5	23	278	67	368
6	29	286	67	382
7	39	291	67	397
10	81	306	67	454
Brez vseh omejitev	1965	433	68	2466

Model naključne hoje

Pomanjkljivost zgornjega algoritma je v tem, da temelji na seznamu aktivnih kamnolomov v Sloveniji, zato z njim razstreljevanj v obmejnih območjih sosednjih držav in razstreljevanj, ki se zgodijo izven kamnolomov, nikakor ne moremo odkriti. Tako smo v nadaljnjem razločevanju izvora dogodkov uporabili test, ki temelji na modelu naključne hoje (Rydelek in Hass, 1994) in obenem ni odvisen od poznavanja aktivnih kamnolomov. Pri tem testu preslikamo lokalni čas dogodka od 0-24 ur (brez datuma) v kot od 0°-360°. Nato se za vsak dogodek, ki se je zgodil znotraj omejenega prostora, premaknemo za vedno enako dolg korak v smeri, ki ga predstavlja čas, preslikan v kot. Test naključne hoje predvideva, da nas bo ta po N korakih pripeljala (π*N/4)1/2 korakov daleč. Na ta način preverimo, ali zaznamo dogodke enakomerno čez ves dan. Naša predpostavka je, da se časovno potresi dogajajo enakomerno, vendar pa ponoči zaradi zmanjšanega seizmičnega šuma potresne opazovalnice zaznajo več predvsem zelo šibkih potresov (slika 2 zgoraj). Tako bi po zgoraj opisanem dejstvu korakali približno proti sever-severovzhodu (15°-60°). Razstreljevanja pa se običajno dogajajo v dnevnem času (med 6. in 19. uro po lokalnem času), kar bi našo smer hoje preusmerilo med 90° in 285°. Postopek je podrobneje opisan v članku Prosen in drugi (2001).

Preden smo izvedli test naključne hoje, smo iz kataloga potresov za leto 2017 odstranili vsa že opredeljena razstreljevanja (LP in LE). Dodatno smo izločili tudi pred- in popotrese, ker se zgodijo v bližini glavnega potresa, obenem pa je število potresov takoj po glavnem potresu običajno zelo veliko in s časom upada. V primeru, da bi take dogodke obdržali v katalogu, bi pri testu naključne hoje najverjetneje zakorakali v smer, ki predstavlja čas glavnega potresa in številnih prvih popotresov, s tem pa zameglili ostalo potresno dejavnost na tem območju.

Po odstranitvi pred- in popotresov je v naboru ostalo 1502 lociranih domnevno naravnih potresov v Sloveniji in bližnji okolici. Področje Slovenije in bližnje okolice, to je območje med 44,5°-47,0° N in 12,0°-17,0° E, smo razdelili na mrežo 806 celic, 26 v smeri sever-jug in 31 v smeri vzhod-zahod. Pri tem se celice nekoliko prekrivajo in merijo približno 15 km x 15 km (0.14° v smeri sever-jug in 0.19° v smeri vzhod-zahod). V vsaki teh celic smo po opisani metodi izračunali dolžino poti in smer korakanja. Rezultat prikazuje slika 3. Vsaka celica ima kazalec, ki kaže, v katero smer smo s korakanjem prišli, medtem ko barva pove, kolikokrat smo presegli pričakovano razdaljo naključne hoje (faktor k). Presežek za faktor k=1,7 ustreza 10 % verjetnosti, da je dosežena oddaljenost še rezultat naključne hoje (Prosen in drugi, 2001). Večji faktor

Slika 3: Rezultat testa naključne hoje za katalog potresov za Slovenijo in bližnjo okolico za leto 2017. Velikost celic je približno 15 km x 15 km. Vsaka celica ima kazalec, ki kaže, v katero smer smo s korakanjem prišli, medtem ko barva pove, kolikokrat smo presegli pričakovano razdaljo naključne hoje (k). V belo pobarvanih celicah ni potresov.

Figure 3: The result of a random walk test for the earthquake catalogue 2017 for Slovenia and the surrounding area for 2017. The size of the cell is approximately 15 km x 15 km. Each cell has a pointer to indicate in which direction we reached with the march, while the colour tells us how many times we exceeded the expected distance of the random walk (k). There are no earthquakes in the white-coloured cells.

pomeni manjšo verjetnost. Zanimajo nas predvsem celice, v katerih smo se s korakanjem v dnevnem času preveč oddaljili od izhodišča, in sicer ko smo za več kot 1,7-krat presegli pričakovano razdaljo v smeri med 90°-285°, kar bi lahko pomenilo, da se v celici niso dogajali le časovno naključni dogodki. Te celice smo obrobili črno in vse dogodke ponovno pregledali. S ponovno analizo smo štiri dogodke prepoznali kot verjetna razstreljevanja oz. dogodke, ki verjetno niso naravni potresi.

Zaključek

V Sloveniji se je leta 2017 večina prepoznanih in dokumentiranih razstreljevanj zgodila v kamnolomih, in sicer v dnevnem času med 7. in 19. uro po lokalnem srednjeevropskem oz. srednjeevropskem poletnem času, vse dni v tednu z izjemo nedelje. Tako časovne kot krajevne lastnosti pojavljanja razstreljevanj smo uporabili za sito, na katerem je po presejanju ostalo nekaj potresov, ki bi lahko bili neprepoznana razstreljevanja in smo jih ponovno pregledali. Algoritem je uporaben tako za dnevni pregled potresov kot za katalog daljšega časovnega obdobja. Uporabili smo še drug pristop, model naključne hoje, ki je uporaben predvsem za katalog daljšega časovnega obdobja. Ta pristop ne temelji na seznamu kamnolomov, zato je njegova prednost v tem, da lahko zajame tudi razstreljevanja, ki niso vezana na kamnolom, ter tista, ki so se zgodila v čezmejnih območjih, za katera ne poznamo aktivnosti v kamnolomih. Oba pristopa sta uspe-šno odkrila nekaj razstreljevanj, ki smo jih v predhodni analizi označili za tektonski potres.

Literatura

- ARSO, 2017. Baza podatkov za potrese na ozemlju Slovenije leta 2017. Agencija RS za okolje, Urad za seizmologijo, Ljubljana.
- Jesenko, T., Živčić, M., 2001. Merjenje seizmičnega nemira na lokacijah bodočih seizmoloških opazovalnic. Potresi v letu 1999, Agencija RS za okolje, Urad za seizmologijo, Ljubljana.
- Prosen, T., Bajc, J., Živčić, M., 2001. Občutljivost potresne opazovalnice na Veliki Štangi. Potresi v letu 1999, Agencija RS za okolje, Urad za seizmologijo, Ljubljana.
- Rydelek, P.A., Hass, L., 1994. On estimating the amount of blasts in seismic catalogs with Schuster's method. Bull. Seismol. Soc. Am. 84 (4), 1256–1259.

Ina Cecić¹, Dušan Nečak², Marko Berus³

Potres 29. januarja 1917 pri Brežicah in njegove posledice The 29 January Brežice Earthquake And Its Consequences

Povzetek

Ob stoletnici brežiškega potresa sta bili narejeni obsežni zgodovinski in seizmološki raziskavi (Nečak, 2016; Cecić, 2016; Nečak in Cecić, 2018), ki sta prinesli vrsto novih ugotovitev. Potres se je zgodil 29. januarja 1917 ob 8. uri in 22 minut po svetovnem oz. ob 9. uri in 22 minut po lokalnem času. Največjo intenziteto (VIII EMS-98) je dosegel v štirih naseljih: Brežice, Krška vas, Šentlenart in Zakot.

Najpomembnejši podatkovni viri za ocenjevanje intenzitet potresa v ožjem nadžariščnem območju so vsekakor originalni zapisniki o škodi, ki jih hrani Arhiv RS (ARS). Omogočili so nam natančni vpogled v situacijo na najbolj poškodovanem območju, kot tudi izdelavo statistike poškodb po zahtevah Evropske potresne lestvice (Grünthal, 1998).

Glede na makroseizmične podatke je bilo žarišče potresa en kilometer jugozahodno od centra Brežic. Njegova makroseizmična magnituda (M_m) je 5,0. Potres je zahteval dve smrtni žrtvi, več ljudi je bilo ranjenih. Poškodovanih je bilo več sto hiš.

Po doseženi intenziteti je bil potres 29. januarja 1917 najmočnejši potres v 20. stoletju z žariščem v Sloveniji. Po intenziteti je bil od njega močnejši le potres 6. maja 1976, vendar z žariščem zunaj slovenskih meja, v Furlaniji (Italija). V Sloveniji je dosegel intenziteto VIII–IX EMS-98 v Podbeli. Po makroseizmični magnitudi ($M_m = 5,3$) se je najmočnejši potres v 20. stoletju z žariščem v Sloveniji zgodil 12. aprila 1998 v zgornjem Posočju, vendar ni dosegel take intenzitete kot brežiški potres. Največjo intenziteto, tj. VII–VIII EMS-98, je dosegel v krajih Lepena, Magozd, Spodnje Drežniške Ravne in Tolminske Ravne.

Popolna novost v tej raziskavi je prvič pripravljena karta potresne škode v Brežicah. Le-ta nam nazorno pokaže položaj poškodovanih stavb, njihove karakteristike in stopnjo poškodovanosti.

Abstract

The earthquake on 29 January 1917 near Brežice occured during the difficult times of the First World War. Small town Brežice (German name Rann) was in the Austro-Hungarian Monarchy, and administratively belonged to the province of Styria. Before the earthquake there were approximately 1200 people living there, predominantly in one-storey houses made of stone, bricks, wood or combined materials.

In the morning of 29 January, at 8:22 UTC (9:22 local time) a strong earthquake caused extensive damage in Brežice and its surroundings. Two women died and several people were wounded.. Due to the harsh winter conditions and lack of provisions due to the war, the inhabitants were left in dire situation. In the region there were many refugees from the frontline regions elsewhere in Monarchy, as well as numerous wounded soldiers, who were taken care of in military hospitals. Soon after the earthquake the city officials managed to persuade the authorities to send help. As it was too cold to live in the tents, the matter of retrofitting the houses was urgent.

Some weeks after the earthquake the administration sent to Brežice and surrounding area a team of experts with the task to make an overview of damage, house by house, and provide the estimate of the cost of reparation.

The finding of original documents produced by this team coincided with the beginning of a new study of the Brežice earthquake in 2016. The aim of seismologists was to find as many of primary data sources as possible and re-evaluate the intensities of the main shock according to European Macroseismic Scale (EMS-98). We have managed to find 26 different photographs and postcards and 6 drawings of damage in Brežice, Čatež ob Savi, Krška vas and Dobeno. For the region of Croatia 140 questionnaires and cards were obtained from the archives of

2 dusan.necak@guest.arnes.si

¹ Agencija RS za okolje, Vojkova 1 b, Ljubljana, ina.cecic@gov.si

³ marko.berus1@gmail.com

the Geophysical Institute in Zagreb. Several eyewitnesses' reports are preserved in Posavje Museum in Brežice, in Macroseismic archive of ARSO in Ljubljana and were also printed in newspapers and studies. For this study we have consulted 35 newspapers and journals from Slovenia, Austria, Croatia and Italy and found 323 published articles regarding the earthquake, its effects, collection of aid and reconstruction process. Several studies, books and papers were consulted as well, together with some older earthquake catalogues.

The earthquake caused the strongest effects in four localities: Brežice, Krška vas, Šentlenart and Zakot, where the intensity was VIII EMS-98. Brežice was the largest locality with the largest number of damaged buildings. We have used cadastral plans and parcel records of the land cadastre and combined them with the data from the documents on damage, in order to visualize the spatial distribution of the damaged buildings. This is the first such visualisation of damage for some Slovenian earthquake.

After consulting all the data sources we were able to evaluate intensities for 344 localities, and to present 338 among them on the intensity map. For 287 localities (83%) we were able to estimate the intensity on the basis of primary or combination of primary and secondary sources. The earthquake was felt up to 130 km away from the epicentre (the farthest point being Graz in Austria).

The macroseismic epicentre of the main shock was 1 km SW from Brežice. Its macroseismic magnitude was 5.0.

Uvod

Potres 29. januarja 1917 se je zgodil v obdobju, ko je seizmologija v Evropi že imela solidno podlago. V regiji so delovali številni strokovnjaki, ki so zbirali in interpretirali seizmološke podatke, tako instrumentalne kot neinstrumentalne (makroseizmične). Poleg opazovalnice v Ljubljani, ki je bila tudi prva potresna opazovalnica v avstrijskem delu Monarhije, so delovale opazovalnice v Zagrebu, Trstu, Pulju, Gradcu, na Dunaju in v Budimpešti (Nečak in Cecić, 2018).

Brežice so takrat imele približno 1200 prebivalcev. Administrativno so sodile v ozemlje dežele Štajerske, v takratni Avstro--Ogrski monarhiji. Večina ljudi je živela v enonadstropnih hišah, zgrajenih iz opeke, lesa ali kombinacije materialov.

Glavni potres se je zgodil 29. januarja 1917 ob 8. uri in 22 minut po UTC (9.22 po lokalnem času) v neposredni bližini Brežic. Najmočnejši popotresi so bili isti dan ob 8.38, 9.14, 10.29 in 21.18 UTC, kot tudi v naslednjih dnevih in mesecih. Povzročili so dodatno gmotno škodo in prestrašili prebivalce (slike 1–3).

Še istega dne je brežiški okrajni glavar ob 12. uri in 35 minut poslal cesarskemu namestniku v Gradec naslednji obupani telegram oz. klic na pomoč: »Tukaj, katastrofalni potres. Hiše neuporabne. Uradi ne morejo delovati. Prosim za takojšnjo pomoč vojaškega poveljstva v moštvu, ki bo pomagalo pri gradbenih delih in stražilo hiše. Mudi se, tudi smrtne žrtve. Okrajni glavar«. Kljub pregovorno zbirokratzirani avstrijski državni upravi je dobil odgovor, tako rekoč, takoj, tj. ob 14. uri in 15 minut: »Vojaška pomoč pri vojaškem poveljstvu zahtevana. Inženir Steininger poslan v Brežice …« (Nečak in Cecić, 2018).

Potres je, glede na podatke iz časopisnih virov, zahteval vsaj dve smrtni žrtvi. Ustrezni dokumenti, ki bi to potrdili, zaenkrat še niso najdeni. Veliko je bilo ranjenih, več sto ljudi je ostalo brez strehe nad glavo. Razmere so bile zelo zahtevne zaradi vojne, revščine in nizkih zimskih temperatur.

Mesto je bilo tako poškodovano, da je po mnenju vodje okrajnega urada približno polovica prebivalstva zapustila mesto. Tisti, ki so ostali brez strehe nad glavo, so bili nameščeni v železniške vagone ali pa v šotore, ki so jih postavili v ta namen. Prehranjevanje prebivalstva se je izvajalo s poljskimi kuhinjami, in sicer tako, da so morali premožnejši pokazati nakaznico za hrano, ki so jo kupili vnaprej, tisti brez premoženja pa so dobili brezplačno nakaznico (Freianweisung). Poskrbljeno je bilo tudi za varnost, saj so oblasti v mestu oblikovale vojaško enoto, ki je skrbela za varnost ljudi (k. u. k. Streffkor). Takrat je gradbenega materiala zaradi vojnega stanja močno primanjkovalo in ga je bilo mogoče dobiti le preko vojaških oblasti. Manjkalo je tudi ljudi za popravila in obnovo, ker so bili moški večinoma na frontah, daleč od poškodovanih domov. Potres se je namreč zgodil ob koncu prve svetovne vojne, ki jo je dvojna monarhija že izgubljala. Vsa država je bila v zelo težkem položaju. Zato je bila sanacija povzročene škode še težja.

Da bi ugotovili obseg katastrofe, so 30. januarja, torej dan po glavnem potresu, na lice mesta prišli najodgovornejši oblastniki. Zanimanje za obseg potresnih učinkov med najvišjimi predstavniki oblasti in dinastije je bilo tako veliko, da je 2. februarja prišel v Brežice tudi nadvojvoda Max, brat zadnjega avstrijskega cesarja Karla I., s spremstvom. Njegov prihod naj bi pomirjujoče deloval na prebivalstvo, s svojim prihodom pa je želel izraziti tudi sočutje.

Oblikovana je bila enota, sestavljena iz 200 mož ter 40 inženircev (t.i. sappeur), ki je v Brežice prispela že 31. januarja. Vodil jo je stotnik Donko Breberina. Zaradi poškodovanih objektov je bila med njegovimi najpomembnejšimi nalogami skrb za varnost ljudi. Zapisali so, da je bilo njegovo delo in delo njegove enote tako dobro opravljeno, da kljub kaosu, ki je zavladal v prvih urah po potresu, ni prišlo do niti enega poskusa kraje ali ropa. Tudi kasneje takih primerov niso zaznali.

Lokalne, deželne (dežele Štajerske in dežele Kranjske) in centralne oblasti so sicer hitro priskočile na pomoč, vendar je bila pomoč v strokovni delovni sili potrebni za obnovo, gradbenem materialu, prevoznih sredstvih, varnostnih silah, odvisna pretežno od vojske. Finančna podpora oblasti obnovi je bila razmeroma majhna, pa tudi delitev finančnih sredstev za obnovo je bila zelo natančno in restriktivno predpisana. Zato so bile organizirane različne nabirke sredstev, na pomoč pa so priskočile tudi cerkvene oblasti in na pol zasebne organizacije ter celo judovska skupnost v Gradcu. Kljub temu se je obnova zavlekla še tudi v čas po prvi svetovni vojni, nekako do srede dvajsetih let. (Nečak in Cecić, 2018)

Slika 1: Poškodovana notranjost frančiškanske cerkve sv. Antona Padovanskega v Brežicah (sliko hrani PMB). *Figure 1*: Damaged interior of the church of St Anthony of Padua in Brežice (courtesy of PMB).

Slika 2: Globoke razpoke na fasadi Godlerjeve hiše, Brežice (sliko hrani PMB). *Figure 2*: Deep cracks on the facade of Godler's house, Brežice (courtesy of PMB).

Slika 3: Na Mestni hiši se je zaradi potresa porušila južna fasada (sliko hrani PMB). *Figure 3*: Damage on southern wall of the City Hall, Brežice (courtesy of PMB).

Uporabljeni viri podatkov

Primarni in sekundarni viri, ki so bili uporabljeni za to raziskavo, se (originali ali kopije) nahajajo v Makroseizmičnem arhivu Agencije Republike Slovenije za okolje v Ljubljani (ARSO MsA).

V času po potresu so najprej nastale fotografije škode; seizmološki opazovalci so izpolnili in odposlali temu namenjene vprašalnike, zapisana so bila pričevanja očividcev. To so podatki, ki prikazujejo posledice potresa s sliko, ali pa so pričevanja ljudi, ki so potres osebno doživeli.

Uradne komisije so nekaj mesecev po potresu popisale škodo. Ves ta čas pa so o potresu, njegovih posledicah in o popotresih poročali časopisi. Te informacije so do nas prišle skozi filter, ker so bile odvisne od popisovalca škode, ki je moral v nekaj besedah opisati celotno zgradbo in njeno stanje, ali pa od novinarja, ki je povzemal videno ali besedila drugih poročevalcev.

Temu so sledile strokovne študije, ki so jih objavili v letih po potresu. V njih primarnih podatkov praviloma ni (izjema je nekaj zapisanih poročil ljudi, ki so potres doživeli). Preberemo pa lahko strokovno interpretacijo zbranih podatkov. Na koncu tega časovnega prikaza so katalogi potresov, ki so večinoma nastali mnogo let pozneje. V njih so vsi podatki o potresu povzeti le z nekaj številkami. Te nam podajo časovno in prostorsko opredelitev potresa ter oceno njegove moči.

Za analizo posledic potresa 29. januarja 1917 smo uporabili veliko primarnih podatkov. To so: fotografije, vprašalniki, poročila očividcev, časopisi in zapisniki o škodi.

Posavski muzej Brežice (PMB) hrani deset razglednic in štiri črno-bele fotografije potresne škode in prenove. Motivi na njih so večinoma poškodbe, ki jih je potres povzročil na posameznih stavbah, in tudi prizori iz obdobja po potresu (vojaški šotori, odstranjevanje ruševin). Dva posnetka poškodb, ki prikazujeta razpoko nad oknom na brežiškem gradu in Kroflovo hišo, sta v lasti Judite Marolt. Nekatere fotografije so bile objavljene v časopisih, časnikih in študijah.

Ljubljanski časopis Ilustrirani glasnik je 15. marca 1917 objavil šest fotografij, tri s Čateža ob Savi in tri iz Krške vasi. To so edine znane ohranjene fotografije iz teh dveh naselij. Poleg vsake fotografije je kratek opis (lastnik, namen objekta, druge zanimivosti).

Tornquist (1918) je v svoji študiji objavil tri fotografije in dve risbi iz Brežic. Heritsch in Schwinner (1919) sta objavila dve fotografiji poškodb na Dobenem in eno s pokopališča na Čatežu ter risbe rotacij objektov na Dobenem in v Brežicah.

Vprašalnike za Slovenijo je v času potresa zbirala Potresna komisija s sedežem na Dunaju (danes je to Zentralanstalt für Meteorologie und Geodynamik, okrajšano ZAMG). Vprašalniki za današnjo Avstrijo naj bi se nahajali v njihovem arhivu, toda med izvajanjem te raziskave jih tam nismo našli. Vprašalniki za Slovenijo za obdobje 1918–1941 (in mogoče še za kakšen potres pred tem, ker je proti koncu vojne vladala zmeda) so se pošiljali v hrambo v takratni centralni seizmološki arhiv v Beograd. Tamkajšnji kolegi zagotavljajo, da v njihovem današnjem arhivu vprašalnikov za Slovenijo ni več. Vprašalniki za Hrvaško se hranijo v arhivu Geofizikalnega zavoda Fakultete za naravoslovje in matematiko Univerze v Zagrebu. Prejeli smo kopije 140 pozitivnih vprašalnikov (všteto nekaj pisem in dopisnic) in tudi seznam naselij, v katerih prebivalci tega potresa niso čutili.

Pismo očividke iz Celja (Ria Šribar) je shranjeno v Makroseizmičnem arhivu ARSO (ARSO MsA). V Posavskem muzeju Brežice hranijo pričevanji Ivanke Ferenčak (roj. 1906) in Cilke Lukež (roj. 1901), ki ju je leta 1987 in 1993 zapisala kustosinja Ivanka Počkar (Dejak, 2017) Nekaj tednov po potresu so takratne oblasti na teren v širše nadžariščno območje poslale ekipe za popis in oceno škode (ARS). Njihova naloga je bila popisati škodo na posameznih objektih in oceniti, koliko bi stalo popravilo.

Rokopis zapisnikov vsebuje podatke o škodi za mesto Brežice in njegovo predmestje ter 21 naselij v okolici (Brezina, Cundrovec, Trnje, Gornji Lenart, Šentlenart, Črnc, Sela, Mihalovec, Veliki Obrež, Gaberje, Mali Obrež, Mostec, Zakot, Bizeljska vas, Sromlje, Artiče, Glogov Brod, Trebež, Pesje, Stari Grad in Libna). Rokopise hrani Arhiv Republike Slovenije. V slovenščino jih je prevedla M. Nečak (Nečak, 2016), celoten prepis in prevod je objavil D. Nečak (Nečak in Cecić, 2018). Gre za zelo pomemben in bogat vir podatkov o posledicah potresa. Sezname sestavljajo naslednji podatki: hišna številka, ime lastnika, površina objekta (v kvadratnih metrih), opis zgradbe, opis poškodb in na koncu ocena stroškov za obnovo (v kronah). Popisovalci so zapisali kratke in jedrnate opise stavb (gradbeni materiali, število nadstropij, tip strehe in tal, število prostorov, včasih tudi kvaliteta gradnje ...).

Med primarne podatke sodijo tudi časopisni članki. Uporabili smo časopise iz treh nacionalnih digitalnih knjižnic: avstrijske ANNO, slovenske dLib in hrvaške NSK.

Za to raziskavo smo pregledali 35 različnih časopisov iz dveh (zdaj štirih) držav (Slovenija, Avstrija, Hrvaška in Italija), v treh različnih jezikih (slovenščina, hrvaščina in nemščina). Članke o potresu 29. januarja 1917 najdemo v 25 pregledanih časopisih. Skupno smo našteli 323 objavljenih člankov o potresu, zbiranju pomoči in o popotresni prenovi.

Poleg naštetih primarnih virov smo v raziskavi uporabili številne sekundarne vire – študije, oziroma kompilacije narejene na podlagi primarnih virov, kot tudi starejše kataloge potresov.

Učinki potresa in analiza poškodb

Številni časopisi so poročali o posledicah, ki jih je povzročil potres v Brežicah. Prva, bolj skopa poročila so bila objavljena že na dan potresa. V naslednjih dneh se je v večini pregledanih časopisih našel vsaj en članek o nesreči, ki je prizadela Brežice. Nekateri časopisi so se zanašali na dopise, ki so jih pošiljali tamkajšnji prebivalci, drugi pa so v najbolj prizadete kraje poslali svoje poročevalce.

Vse objekte, omenjene v zapisnikih o škodi, smo analizirali s pomočjo Evropske potresne letvice EMS-98. V zapisnikih za Brežice so le na eni stavbi (hišna številka 54c) poškodbe ocenjene kot nepomembne. Opisana sta tudi dva nestandardna objekta, in sicer grad in cerkev. V zapisnikih o škodi sta poročili za mesto Brežice in njegovo predmestje ločeni enoti. Šele po izrisu objektov na karto smo videli, da so hiše dejansko tako pomešane, da področji tvorita eno celoto. Zato smo pri oceni intenzitete potresa za Brežice upoštevali podatke za mesto in predmestje skupaj.

Zgodovinska raziskava (Nečak in Cecić, 2018) nam pove, da je v zapisnikih o škodi v Brežicah omenjenih 266 objektov. Škoda je bila ocenjena za 181 objektov. Razlog je ta, da je na posamezni hišni številki isti lastnik poleg stanovanjske stavbe imel še več pomožnih ali gospodarskih objektov, za katere v 85 primerih ni bila podana posebna opredelitev škode. V primerih, ko ni bilo jasno, na kateri objekt istega lastnika na isti hišni številki se opis škode nanaša, smo upoštevali, da je opisana škoda za glavni (stanovanjski) objekt.

Pri prikazovanju ocenjenih objektov na karti smo naleteli še na težavo, da se jih s pomočjo ohranjenih dokumentov ni dalo identificirati v popolnosti. Uspelo nam je nedvomno določiti položaj 159 objektov, omenjenih v zapisnikih o škodi.

Večina objektov v Brežicah je sodila v ranljivostno skupino B. To so zidane stavbe ali pa take iz mešanih materialov, iz enostavnega kamna, brez ojačenja, lahko z vgrajenimi elementi iz obdelanega kamna. Pri določanju, v katero

Slika 4: »Hiša Janeza Ivšiča v Krški vasi št. 21 je popolnoma razsuta. Ko se je hiša porušila, je ubila in pokopala troje goved in posula Ivšičevega sina, ki so ga težko poškodovanega s težavo rešili izpod grobelj.« (Ilustrirani glasnik, 15. 3. 1917).

Figure 4: Janez Ivšić's house in Krška vas 21 is completely destroyed. The collapse killed and burried three cows, Ivšić's son was badly hurt and rescued with difficulty under the rubble. (Ilustrirani glasnik, 15 March 1917).

ranljivostno skupino sodi stavba, igrata pomembno vlogo tudi njena starost in stanje, v katerem se nahaja. Zato je za nekatere stavbe, za katere je bilo poudarjeno, da so bile nove ali v zelo dobrem stanju, določena ranljivostna kategorija C. V kategorijo A pa sodijo najslabše grajene stavbe ali pa take, ki so bile v slabem stanju.

Večina izmed 159 na karti prikazanih objektov, tj. 62 %, je utrpela tretjo stopnjo poškodovanosti. Tretja stopnja pomeni znatno do veliko poškodovanost: konstrukcija je zmerno poškodovana, nekonstrukcijski elementi pa so močno poškodovani, na večini zidov so široke in velike razpoke, zdrsnejo strešniki, dimniki se odlomijo v višini strehe, porušijo se posamezni nekonstrukcijski elementi.

Krška vas se nahaja na desnem bregu Save in je takrat sodila pod deželo Kranjsko; ker so se ohranjeni zapisniki o škodi nanašali le na štajerske kraje, nimamo podrobnih poročil o škodi. Pa vendar je v časopisnih poročilih ohranjeno veliko podatkov. Hudo poškodovanih je bilo najmanj 25 (v nekaterih časopisih namesto 25 piše 28) hiš, ki jih je bilo treba podreti. Poškodovane so bile celo lesene hiše. Povsod so se porušile zidane peči. Človeških žrtev ni bilo, dva fanta sta pa bila huje poškodovana, ko se na njiju zrušila stena hiše, v hlevih je umrlo več glav živine in perutnine (slika 4).

V Šentlenartu so popisovalci ocenili škodo 41-ih objektov, v svojih poročilih so pa omenjali 84 različnih stavb in eno cerkev. Od tega je bilo močno poškodovanih 8 objektov. Najbolj poškodovane hiše so dobile izbokline, porušili so se zatrepi in sesedle zunanje stene. Razpokala je cerkev svetega Leonarda, tudi kapelica je bila zelo hudo poškodovana. Zakot je danes del Brežic, v času potresa je bila vas naseljena z revnejšim prebivalstvom. Komisije so popisale škodo na 32 objektih, v poročilih jih omenjajo skupno 34. Na najbolj poškodovanih hišah so se porušili zatrepi.

Karta poškodb v Brežicah

Podatke o potresnih poškodbah smo želeli prikazati na karti iz časa potresa, vendar smo bili glede izbire kartografske podlage zelo omejeni. Kot najprimernejšo kartografsko podlago smo izbrali zemljiško-katastrski načrt (Franciscejski kataster) v merilu 1 : 2880 v seženjskem merskem sistemu in koordinatnem sistemu z izhodiščem v Schökelbergu pri Gradcu v današnji Avstriji (Berus, 2017), ki je bil izdelan med leti 1819 in 1825. To je grafični prikaz zemljiških in stavbnih parcel ter stavb.

V reambulančnem katastru za območje Brežic so na voljo štirje listi, od katerih sta bila za izdelavo karte uporabljena dva: prvi list, s prikazom središča Brežic severno od brežiškega gradu in tretji, na katerem je predmestje južno od gradu. Zaradi prevelikega odstopanja na robovih listov ju nismo združili, ampak uporabili vsakega posebej kot samostojno kartografsko podlago.

Pri izdelavi karte poškodb smo parcelne številke s katastrskega načrta (GURS, 2017a) povezali s posestniki (lastniki), vpisanimi v oceno škod, ter oceno ranljivosti in stopnje poškodovanosti posamezne stavbe (Nečak in Cecić, 2018). Ključ za povezavo kart, na katerih so le parcelne številke, z zapisniki o škodi, ki vsebujejo naslove in lastnike, je Parcelni zapisnik. Le-ta med drugim vsebuje potrebne podatke o posestniku (ime, priimek in bivališče), hišno številko in številko parcele, kar je dovolj za enolično identifikacijo poškodovanih objektov. Vse našteto gradivo hrani Geodetska pisarna v Brežicah (GURS, 2017).

Karta Franciscejskega katastra ima vpisane le parcelne številke pozidanih in nepozidanih parcel, kar pa ni neposredno povezljivo s podatki iz zapisnikov o potresni škodi (ARS). Vedeli smo, da operat Franciscejskega katastra sestavlja tudi parcelni zapisnik, ki bi moral rešiti težavo. Po podrobnem pregledu arhivskega gradiva na Geodetski upravi RS v Geodetski pisarni Brežice smo ga tudi našli. Parcelni zapisnik je spisovno gradivo Franciscejskega (in reambulančnega) katastra, ki med drugim vsebuje potrebne podatke o posestniku (ime, priimek ter bivališče), hišno številko in številko parcele. Tako smo lahko podatke o škodi povezali s kartografsko podlago.

Identifikacija objektov, za katerega imamo na razpolago zapisnike o škodi ali fotografije, ni bila enostavna. Priimki lastnikov v seznamu poškodb in parcelnem zapisniku niso vedno zapisani na enak način. Enako je z drugimi viri. Tornquist (1918) na primer opisuje zamik dimnika pri Antonu Glančarju – oseba se je dejansko pisala Anton Klavžar (Počkar, 2005). V več primerih ni bilo mogoče točno identificirati položaja objekta, ki je opisan v zapisnikih škode, ker se podatki niso ujemali.

Pri izdelavi karte poškodb za Brežice (slika 5) je bilo območje prikaza razdeljeno na dva lista, ker lista obravnavanih katastrskih načrtov nista usklajena na robovih. Za predstavitev podatkov na karti so bili izdelani kartografski znaki. Vsak znak sočasno predstavlja dva podatka, stopnjo poškodovanosti stavb zaradi potresa (1–5) in stopnjo ranljivosti stavb (A–C). Stopnja poškodovanosti je prikazana v barvni lestvici, kjer zelena barva ponazarja rahlo poškodovan objekt (1), temno rdeča barva pa porušen objekt (5). Stopnja ranljivosti je prikazana z obrobo kartografskega znaka. Znak, obrobljen z belo barvo, ponazarja stopnjo ranljivosti A, obrobljen delno s črno in belo B in črno obrobljen C (Berus, 2017).

Uspeli smo identificirati kar 135 stavb, klasificirati škodo, tipizirati objekte, jih oceniti po EMS-98 in prikazati na karti. Stavbe smo razvrstili po poškodovanosti, kot to prikazuje preglednica 1. Iz podatkov v preglednici 1, lahko sklepamo, da so bile Brežice v potresu hudo prizadete, saj sta bila le 2 % stavb lažje poškodovanosti, brez konstrukcijskih poškodb. Z 72 % prevladujejo zmerno do hudo konstrukcijsko poškodovane stavbe (oranžne in rdeče) (Berus, 2017).

Slika 5: Karta poškodb v Brežicah po potresu 29. januarja 1917 (list 1) *Figure 5*: Damage in Brežice due to the 29 January 1917 earthquake (sheet 1).

Slika 5: Karta poškodb v Brežicah po potresu 29. januarja 1917 (list 3) *Figure 5*: Damage in Brežice due to the 29 January 1917 earthquake (sheet 3).

Preglednica 1: Statistika poškodovanosti stavb v Brežicah. Barve predstavljajo stopnjo poškodovanosti po EMS-98 (Berus, 2017).

Table 1: Statistical overview of damaged buildings in Brežice. Colours denote damage grade, according to EMS-98 (Berus, 2017).

barva	stopnja poškodovanosti	stopnja poškodovanosti število stavb	
colour	damage grade	no. of buildings	%
zelena / green	1	3	2 %
rumena / yellow	2	34	25 %
oranžna / orange	3	52	39 %
rdeča / red	4	45	33 %
temno rdeča / burgundy	5	1	1 %
skupaj / total:		135	

Karto smo izdelali s programom OCAD 9 (www.ocad.com). Pred začetkom dela smo uvozili rastrski podlagi Franciscejskega katastrskega načrta in državni ortofoto. Ker rastrski Franciscejski katastrski načrt ni georeferenciran, smo to naredili s pomočjo državnega ortofota. Poskusili smo ga georeferencirati tudi z zemljiško-katastrskim prikazom, vendar smo, zaradi drugačne oblike stavb in težkega prepoznavanja enakih lomnih točk, ta pristop izključili. Rastrski katastrski načrt smo približno prostorsko umestili le s tremi identičnimi točkami, saj nismo želeli deformirati skenograma katastrskega načrta. (Berus, 2017) Prav tako smo želeli ohraniti tudi približno izvorno merilo 1 : 2880.

S postopkom prepoznavanja stavb smo jim dodelili ustrezne kartografske znake. Na karto smo vrisali tudi objekte, ki smo jih lahko identificirali glede na njihovo velikost, namen in tip gradnje, nismo pa mogli jasno opredeliti stopnje poškodovanosti. Prikazani so s črno obrobljenimi belimi krogci.

Karto smo orientirali proti kartografskemu severu in ji določili naslednje matematične elemente: datum koordintnega sistema je D96, referenčni elipsoid GRS80 in projekcijo, ki je transverzalna Mercatorjeva.

Karta poškodb za Brežice je prva take vrste v Sloveniji in najbolj obsežna med kartami poškodb za naselja, opisana v seznamu poškodb.

Potres so čutili tudi v številnih drugih naseljih; povzetki opisov učinkov v posameznih naseljih so objavljeni v Nečak in Cecić (2018).

Ocenjevanje intenzitet in interpretacija podatkov

Intenzitete smo ocenjevali po Evropski potresni lestvici. Evropska potresna lestvica, z okrajšavo EMS-98, je orodje, ki seizmologom omogoča klasifikacijo in statistično obdelavo podatkov o škodi, ki jo potres povzroči v naseljenem kraju. Tako dobimo podatek o intenziteti potresa v tem kraju. Pri interpretaciji podatkov iz 1917 je bila za vsako stavbo oz. skupino stavb določena stopnja ranljivosti (A, B in občasno C) kot tudi stopnja poškodovanosti (1–5). Stopnji veljata glede na EMS-98 lestvico.

Interpretacija podatkov ni bila enostavna. Lastniki so imeli poleg stanovanjskega objekta še nekaj pomožnih zgradb (hlevi, gospodarska poslopja, kozolci, mlini, lope ...). Zaradi obilice dela so popisovalci pogosto popisali

Slika 6: Intenzitete potresa 29. januarja 1917 ob 8.22 UTC. Prikazani so podatki za 338 naselij. *Figure 6*: Intensitiy (EMS-98) of the earthquake on 29 January 1917 in 338 localities. Nadžarišče = epicentre; škoda = damage; čutili = felt; niso čutili = not felt.

skupaj vse poškodbe za vse stavbe v lastništvu iste osebe. Tudi opisi škode so pogosto skopi (npr. »Dimniki, stene, omet«), kar lahko dejansko pomeni širok razpon škode. S podatki v stolpcu, v katerem so zapisane ocene škod, si nismo mogli veliko pomagati, ker se vsote pogosto ne skladajo z opisi. Poleg tega v tej rubriki niso bile zabeležene odškodnine za objekte ali dele objektov, ki jih je vojska že popravila pred začetkom popisa. Glede tipizacije ranljivosti objektov lahko ugotovimo, da so bile hiše v velikem številu primerov grajene iz mešanice materialov – delno zidane, delno lesene. Strehe so bile delno pokrite s strešniki in delno s slamo; tla so bila delno mehka, delno tlakovana ali lesena.

V zapisnikih o škodi ni podatka o številu zgradb v posameznem naselju. Zato sta upoštevana kot okvirna podatka pri računanju statistike: podatek o največji omenjeni hišni številki in podatek o skupnem številu omenjenih objektov. Za nekatera naselja je bilo podatkov premalo in ni bilo možno narediti statistike poškodb ter določiti intenzitete. V teh primerih je uporabljena oznaka D (angleško damage = škoda). V primeru naselja Mali Obrež, za katerega imamo samo podatek, da je komisija pregledala dve hiši brez poškodb, ni bilo možno določiti niti opisne intenzitete. Potres so tam zagotovo čutili, toda o tem nimamo prav nobene informacije. Zato se Mali Obrež ne pojavlja v končnem seznamu intenzitet.

Čeprav so takratni časopisi izvrsten vir podatkov o potresih, so včasih objavili tudi napačne informacije. V prvih dnevih po potresu je bilo še nekaj zmede pri poročanju o številu žrtev. Kmalu so obe ženski, ki sta zaradi potresa umrli, identificirali. Prva je umrla v Brežicah, kjer je bila na obisku in se je nanjo porušila stena hiše (živela je v Dobrni). Druga je na Savi pri Krškem prala perilo in zaradi potresa utonila. Ni jasno,

ali se je znašla v vodi zaradi strahu ali zaradi morebitnega zdrsa dela brežine. Dejstvo je, da v zimskih oblačilih in v ledeno mrzli vodi (temperature zraka so bile tiste dni globoko pod ničlo) ni mogla preživeti. V do sedaj pregledanem arhivskem gradivu ni podatka o teh dveh žrtvah.

V Brežicah in okoliških vaseh je bilo ranjenih več oseb, civilistov in vojakov. Mediji so posebej izpostavili dva fanta v Krški vasi, ki sta bila rešena izpod porušene stene hiše. Oba sta bila hudo poškodovana.

Vsi zbrani primarni in sekundarni viri so bili skrbno analizirani. Intenzitete so bile ocenjene po EMS-98. V primeru, da za neki kraj obstaja več primarnih in sekundarnih podatkovnih virov, smo privzeli, da so podatki iz primarnih virov zanesljivejši.

Skupno smo zbrali podatke o intenziteti v 344 krajih. Od tega se na tri kraje nanaša lažno (fake) poročilo, in sicer Dunaj, Trst in Pulj. Za tri kraje (Deutchlandsberg, Đurašić in Tišinac) nismo uspeli nedvomno določiti, kje so se nahajali. Tako so na karti intenzitet prikazani podatki za 338 naselij.

Za 287 naselij (83 %) smo lahko ocenili intenziteto na podlagi primarnih virov ali iz kombinacije primarnih in sekundarnih virov. Za preostalih 57 naselij (17 %) je bila intenziteta ocenjena iz sekundarnih virov.

Ocenjene intenzitete so izrisane na karti (sliki 6 in 7). Vsaka barvna pika ponazarja naselje, za katerega obstaja podatek o potresnih učinkih. Rumene pike so naselja, za katera obstajajo poročila, da prebivalci niso čutili potresa.

Slika 7: Intenzitete potresa 29. januarja 1917 ob 8.22 UTC v širšem nadžariščnem območju. *Figure 7*: Intensitiy (EMS-98) of the earthquake on 29 January 1917 in wider epicentral area. Nadžarišče = epicentre; škoda = damage; čutili = felt.

Intenziteto VIII EMS-98 je potres 29. januarja 1917 dosegel v štirih naseljih. To so: Brežice, Krška vas, Šentlenart in Zakot. Intenziteto VII ali VIII EMS-98 (okrajšano pišemo VII-VIII) je dosegel v štirih naseljih, VII EMS-98 v 4, VI ali VII EMS-98 v 6, VI EMS v 23, V ali VI EMS-98 v 21, V EMS-98 v 35, IV ali V EMS-98 v 27, IV EMS-98 v 48, III ali IV EMS-98 v 16 in III EMS-98 v 14 naseljih. Za 24 naselij imamo poda-tek, da je potres povzročil gmotno škodo, toda ni dovolj podatkov, da bi določili intenziteto. Zato je v teh naseljih določena opisna intenziteta D (damage = škoda). Podobno imamo za 34 naselij le podatek, da so prebivalci potres čutili, ob tem pa ni nobenih podrobnosti, ki bi omogočile oceno intenzitete. Za ta naselja je določena opisna ocena F (felt = čutili). Za 67 naselij imamo podatke, da prebivalci potresa niso čutili (intenziteta I EMS-98). Podatki o intenziteta h so predstavljeni v Preglednici 3.

Makroseizmična magnituda potresa 29. januarja 1917, izračunana po formuli, objavljeni v Živčić in Cecić (1998) za polje intenzitete V EMS-98 in srednji polmer 52 km, je 5,1. Vrednost makroseizmične magnitude za področje intenzitete VI EMS-98 je 4,9 (srednji polmer 22 km). Za intenziteto IV EMS-98 ni mogoče izračunati makroseizmične magnitude, ker na zahodnem in severnem robu polja učinkov ni dovolj podatkov. Zato področje intenzitete IV EMS-98 ni dobro definirano. Iz navedenega sledi, da je makroseizmična magnituda potresa 29. januarja 1917 enaka srednji vrednosti dveh magnitud, ki sta bili izračunani za intenziteti V in VI EMS-98, torej 5,0.

Na podlagi prikazanih podatkov je določena nova parametrizacija potresa 29. januarja 1917, ki je podana v preglednici 2. Glede na zbrane makroseizmične podatke je bilo nadžarišče potresa en kilometer jugozahodno od centra Brežic, med Brežicami in Krško vasjo. Položaj nadžarišča je določen kot uteženo povprečje vrednosti intenzitete za naselja z intenziteto VIII, VII–VIII, VII in VI–VII EMS-98. Ocenjena natančnost tako določenega makroseizmičnega nadžarišča je ±1 km.

Preglednica 2: Parametri potresa 29. januarja 1917, po Ribarič (1982) in Cecić (Nečak in Cecić, 2018). *M* = mesec; *D* = dan; *h* = ura; UTC = svetovni čas (univerzalni koordinirani čas); min = minuta; Zem. š. = zemljepisna širina, °N; Zem. d. = zemljepisna dolžina, °E; *I* = intenziteta; Lestv = uporabljena intenzitetna lestvica; *M* = magnituda; Tip *M* = tip prikazane magnitude.

Table 2: Parametres of the earthquake on 29 January 1917, according to Ribarič (1982) and Cecić (Nečak and Cecić, 2018). M = month; D = day; h = hour; UTC = Universal Time Coordinated; min = minute; Lat = latitude, °N; Lon = longitude, °E; I = intensity; Scale = intensity scale; M = magnitude; M type = magnitude type.

avtor	leto	m	h UTC	d	min	zem. š	zem. d.	kraj	I	lestv	М	tip M
author	year	m	h UTC	d	min	lat	lon	epic. area	I	scale	м	M type
Ribarič	1917	01	29	08	22	45,900	15,567	Brežice	8,00	MSK	5,59	ML
Cecić	1917	01	29	08	22	45,90	15,58	Brežice	VIII	EMS-98	5,0	M _m

Sklep

Sto let po tem, ko so prebivalci Brežic in okolice doživeli močen potres, ki je povzročil smrtne žrtve in veliko gmotno škodo, je ta dogodek ponovno raziskan. Takoj po potresu so o njemu pisali takratni geologi in seizmologi. Tokrat se je prvič z njim ukvarjal zgodovinar. Pri tem so bili najdeni novi, do sedaj neobjavljeni podatki. Seizmološke raziskave so odkrile nove vire podatkov, ki so bili uporabljeni za izdelavo karte intenzitet in izračun parametrov potresa. Prvič je bila za nek slovenski zgodovinski potres izdelana tudi karta poškodb, na podlagi zapisnikov o škodi, ki jih hrani Arhiv RS v Ljubljani.

Preglednica 3: Seznam intenzitet potresa 29. januarja 1917

V preglednici so za vsako intenzitetno točko (IDP) podani podatki o datumu in času potresa, imenu naselja v viru, današnjem imenu naselja, ocenjeni intenziteti (EMS-98) ter oznaki glavnega uporabljenega vira podatkov. Oznaka ops pomeni drugi primarni viri (other primary sources). Uporabljena je takrat, ko je za neko naselje na voljo več ohranjenih podatkov iz različnih primarnih virov.

Ostale okrajšave: ARS = Arhiv Republike Slovenije; ZG = vprašalniki za Hrvaško, hranijo se v arhivu Geofizikalnega zavoda Fakultete za naravoslovje in matematiko Univerze v Zagrebu; List Zg (IS) = seznam naselij z intenziteto I EMS-98, podatki v arhivu Geofizikalnega zavoda Fakultete za naravoslovje in matematiko Univerze v Zagrebu; pismo = glej ARSO MsA.

Table 3: List of intensities for the 29 January 1917 earthquake

For every intensity data point (IDP) in the table there is data on date and time of the earthquake, name of the locality as quoted in the source, locality name as of today, intensity (EMS-98) and the code of the main used data source. The code ops (other primary sources) is used in cases where there exist more than one primary sources for some locality.

Other abbreviations: ARS = Archives of the Republic of Slovenia; ZG = questionnaires for Croatia, in the archives of Geophysical Department of the Faculty of Science and Mathematics, University of Zagreb; List Zg (IS) = list of localities with intensity I EMS-98, archives of Geophysical Department of the Faculty of Science and Mathematics, University of Zagreb; pismo = letter.

ura UTC	min	zem. šir.	zem. dolž.	ime v viru	kraj	I EMS-98	vir
hour UTC	min	latitude	longitudde	name in the source	name today	I EMS-98	source
8	22	45,905	15,597	Rann	Brežice	VIII	ARS & ops
8	22	45,892	15,576	Munkendorf	Krška vas	VIII	IC924 & ops
8	22	45,924	15,593	St. Leonhard	Šentlenart	VIII	ARS
8	22	45,914	15,612	Sakot	Zakot	VIII	ARS & ops
8	22	45,917	15,608	Černc	Črnc	VII-VIII	ARS
8	22	45,869	15,610	Dobeno	Dobeno	VII-VIII	IC274
8	22	45,903	15,559	Skopice	Dolenje Skopice	VII-VIII	IC921
8	22	45,878	15,628	Prilipa	Prilipe	VII-VIII	VR135
8	22	45,885	15,525	Cerklje	Cerklje ob Krki	VII	IC921 & ops
8	22	45,893	15,603	Čatež	Čatež ob Savi	VII	IC908 & ops
8	22	45,837	15,588	Stojdraga	Stojdraga	VII	Zg
8	22	45,885	15,573	Malenice pri Krški vasi	Velike Malence	VII	VR324
8	22	45,925	15,598	Brezina	Brezina	VI-VII	ARS
8	22	45,948	15,553	Dolenja vas	Dolenja vas pri Krškem	VI-VII	VR135
8	22	45,938	15,477	Leskovec	Leskovec pri Krškem	VI-VII	IC274

ura UTC	min	zem. šir.	zem. dolž.	ime v viru	kraj	I EMS-98	vir
hour UTC	min	latitude	longitudde	name in the source	name today	I EMS-98	source
8	22	45,891	15,658	Mihalovec	Mihalovec	VI-VII	ARS & ops
8	22	45,905	15,612	Ternje	Trnje	VI-VII	ARS
8	22	45,923	15,378	Videm	Videm	VI-VII	VR135
8	22	46,014	15,286	Boštanj pri Sevnici	Boštanj	VI	VRm
8	22	45,868	15,525	Bušeča vas	Bušeča vas	VI	IC417
8	22	45,865	15,650	Goli Cirnik	Cirnik	VI	VR135
8	22	46,149	15,673	Desinić	Desinić	VI	Zg
8	22	46,008	15,294	D. Boštanj	Dolenji Boštanj	VI	IC417
8	22	45,912	15,791	Pušća Dol.	Donja Pušća	VI	Zg.
8	22	45,930	15,578	Tiergarten	Gornji Lenart	VI	ARS
8	22	46,051	15,749	Klanjec	Klanjec	VI	Zg
8	22	45,693	15,754	Klinča Sela	Klinča Sela	VI	Zg
8	22	45,702	15,477	Kostanjevac	Kostanjevac	VI	Zg
8	22	45,847	15,430	Kostanjevica	Kostanjevica na Krki	VI	IC274
8	22	45,991	15,730	Kraljevec	Kraljevec na Sutli	VI	Zg
8	22	46,089	15,843	Krap. Toplice	Krapinske Toplice	VI	Zg
8	22	45,967	15,490	Gurkfeld	Krško	VI	IC274 & ops
8	22	46,057	14,835	Litija	Litija	VI	IC417
8	22	45,911	15,730	Marija Gorica	Marija Gorica	VI	Zg
8	22	45,864	15,471	Sv. Križ pri Kostan- jevici	Podbočje	VI	IC274
8	22	45,945	15,734	Rozga	Rozga	VI	Zg
8	22	45,866	15,592	Sobenja vas	Sobenja vas	VI	VR135
8	22	45,716	15,597	Sv. Jana	Sv. Jana	VI	Zg
8	22	45,965	16,253	Sv. Ivan Zelina	Sveti Ivan Zelina	VI	Zg
8	22	45,864	15,471	Sv. Križ	Sveti Križ	VI	IC417
8	22	45,767	15,420	Žumberak	Žumberak	VI	Zg
8	22	45,951	15,591	Artitsch	Artiče	poškodbe	ARS
8	22	46,044	15,700	Bizeljska vas	Bizeljska vas	poškodbe	ARS

ura UTC	min	zem. šir.	zem. dolž.	ime v viru	kraj	I EMS-98	vir
hour UTC	min	latitude	longitudde	name in the source	name today	I EMS-98	source
8	22	45,885	15,555	Boršt	Boršt	poškodbe	IC274
8	22	45,879	15,612	Cerina	Cerina	poškodbe	IC925
8	22	45,894	16,063	Čučerje	Čučerje	poškodbe	Zg
8	22	45,900	15,662	Dobova	Dobova	poškodbe	VR135
8	22	46,278	15,400	Dramlje	Dramlje	poškodbe	IC154
8	22	45,203	14,723	Grižane	Grižane	poškodbe	Zg
8	22	45,944	15,919	Kraljev Vrh	Kraljev Vrh	poškodbe	Zg
8	22	46,076	15,682	Kumrovac	Kumrovec	poškodbe	Zg
8	22	45,899	15,633	Brueckl	Mostec	poškodbe	ARS & ops
8	22	45,879	15,584	Mrzla vas	Mrzlava vas	poškodbe	IC921 & ops
8	22	45,941	15,559	Pesje	Pesje	poškodbe	ARS
8	22	45,884	15,546	Račjavas	Račja vas	poškodbe	IC274
8	22	45,916	15,637	Sela	Sela	poškodbe	ARS
8	22	45,990	15,601	Sromlje	Sromlje	poškodbe	ARS
8	22	45,947	15,543	Stari Grad	Stari Grad	poškodbe	ARS
8	22	45,770	15,210	Stopiče	Stopiče	poškodbe	VR135
8	22	46,256	15,123	Šempeter	Šempeter v Savinjski dolini	poškodbe	pismo
8	22	45,919	15,463	Velika vas	Velika vas pri Krškem	poškodbe	IC500
8	22	45,904	15,673	Gr. Obresch	Veliki Obrež	poškodbe	ARS
8	22	45,899	15,458	Veliki Podlog pri Leskovcu	Veliki Podlog	poškodbe	IC274 & ops
8	22	45,914	15,532	Vihre	Vihre	poškodbe	IC500
8	22	45,885	15,533	Župečavas	Župeča vas	poškodbe	IC274 & ops
8	22	45,386	16,640	Bistra	Bistra	V-VI	Zg
8	22	45,871	15,769	Brdovec	Brdovec	V-VI	Zg
8	22	45,926	15,632	Bukoshek	Bukošek	V-VI	ARS
8	22	45,336	15,121	Gomirje	Gomirje	V-VI	Zg
8	22	45,932	15,684	Kapellen	Kapele	V-VI	VR135
8	22	46,106	15,414	Montpreis	Kozje	V-VI	IC919 & ops

ura UTC	min	zem. šir.	zem. dolž.	ime v viru	kraj	I EMS-98	vir
hour UTC	min	latitude	longitudde	name in the source	name today	I EMS-98	source
8	22	45,953	15,524	Libna	Libna	V-VI	ARS
8	22	46,006	16,124	Marija Bistrica	Marija Bistrica	V-VI	Zg
8	22	45,994	15,922	Oroslavlje	Oroslavje	V-VI	Zg
8	22	45,675	15,584	Petrovina	Petrovina	V-VI	Zg
8	22	46,420	15,876	Ptuj	Ptuj	V-VI	IC924 & ops
8	22	45,649	15,398	Radkovica	Rakovec	V-VI	VR135
8	22	45,800	15,932	Rudeš	Rudeš	V-VI	Zg
8	22	45,802	15,714	Samobor	Samobor	V-VI	Zg
8	22	45,949	15,570	Pohanca	Spodnja Po- hanca	V-VI	VR135
8	22	46,000	15,797	Strmec	Strmec	V-VI	Zg
8	22	45,839	15,341	Št. Jernej na Dolen- jskem	Šentjernej	V-VI	IC921
8	22	45,939	15,582	Trebež	Trebež	V-VI	ARS
8	22	45,958	15,199	Tržišče	Tržišče	V-VI	IC274
8	22	46,075	15,753	Tuhelj	Tuhelj	V-VI	Zg
8	22	45,813	15,982	Agram	Zagreb	V-VI	IC921 & ops
8	22	45,420	15,936	Bović	Bović	V	Zg
8	22	46,230	15,269	Celje	Celje	V	IC154 & ops
8	22	45,925	15,612	Zundrovetz	Cundrovec	V	ARS
8	22	45,651	15,652	Cvetković	Cvetković	V	Zg
8	22	46,283	15,963	Cvjetlin	Cvetlin	V	Zg
8	22	45,615	15,975	Dubranec	Dubranec	V	Zg
8	22	45,903	15,656	Gaberje	Gabrje pri Dobovi	V	ARS
8	22	45,946	15,599	Glogov Brod	Glogov Brod	V	ARS
8	22	45,978	16,023	G. Stubica	Gornja Stubica	V	Zg
8	22	45,693	15,695	G. Desinec	Gornji Desinec	V	Zg
8	22	46,120	16,279	Breznički Hum	Hum Breznički	V	IC417
8	22	46,217	15,694	Hum na Sutli	Hum na Sutli	V	Zg
8	22	46,053	14,716	Janče	Janče	V	IC928

ura UTC	min	zem. šir.	zem. dolž.	ime v viru	v viru kraj		vir
hour UTC	min	latitude	longitudde	name in the source	name today	I EMS-98	source
8	22	46,102	14,811	Jesenje	Jesenje	V	Zg
8	22	46,208	14,544	Komenda	Komenda	V	IC274
8	22	46,563	15,649	Marburg	Maribor	V	IC924 & ops
8	22	45,954	15,067	Mirna	Mirna	V	IC417
8	22	46,137	14,749	Moravče	Moravče	V	IC417
8	22	46,025	15,220	Novi Grad	Novi Grad	V	IC417
8	22	45,817	15,840	Podsusjed	Podsused	V	Zg
8	22	45,981	14,709	Polica (Višnja gora)	Polica	V	VRm
8	22	46,264	16,579	Poljanec	Poljanec	V	IC417
8	22	45,929	15,387	Raka	Raka	V	IC417
8	22	45,746	15,799	Rakovpotok	Rakov Potok	V	Zg
8	22	45,853	15,993	Remete	Remete	V	Zg
8	22	45,579	15,352	Ribnik	Ribnik	V	Zg
8	22	46,155	14,489	Skaručina	Skaručna	V	IC274
8	22	45,702	15,546	Slavetić	Slavetić	V	Zg
8	22	45,787	15,079	Straža	Straža	V	IC417
8	22	45,757	15,841	Stupnik	Stupnik	V	Zg
8	22	45,907	15,296	Škocjan	Škocjan	V	IC417
8	22	45,887	15,256	Šmarjeta pri Novem Mestu	Šmarjeta	V	IC417
8	22	46,230	15,307	Teharje pri Celju	Teharje	V	IC274
8	22	45,939	14,914	Veliki Gaber	Veliki Gaber	V	IC417
8	22	46,113	15,008	Zagorje	Zagorje ob Savi	V	IC417
8	22	45,464	14,976	Brod Moravice	Brod Moravice	IV-V	Zg
8	22	45,982	15,972	D. Stubica	Donja Stubica	IV-V	Zg
8	22	45,808	16,244	Dugoselo	Dugo Selo	IV-V	Zg
8	22	45,881	16,641	Farkaševac	Farkaševac	IV-V	Zg
8	22	46,110	16,231	Hrašćina Trgovišće	Hrašćina	IV-V	Zg
8	22	45,521	15,534	Hrnetić	Hrnetić	IV-V	Zg

ura UTC	min	zem. šir.	zem. dolž.	ime v viru	kraj	I EMS-98	vir
hour UTC	min	latitude	longitudde	name in the source	name today	I EMS-98	source
8	22	45,599	15,883	Jamnica	Jamnica Pisa- rovinska	IV-V	Zg
8	22	45,493	15,560	Karlovac	Karlovac	IV-V	Zg
8	22	46,164	15,872	Krapina	Krapina	IV-V	Zg
8	22	46,152	16,070	Lobor	Lobor	IV-V	Zg
8	22	46,232	15,606	Malerodne pri Rogatcu	Male Rodne	IV-V	IC924
8	22	46,557	15,703	Sv. Peter pri Mari- boru	Malečnik	IV-V	IC924
8	22	46,283	16,192	Maruševec	Maruševec	IV-V	Zg
8	22	45,316	14,858	Mrkopalj	Mrkopalj	IV-V	Zg
8	22	46,026	15,735	Nowi-Dvor	Novi Dvori Klanječki	IV-V	IC919 & ops
8	22	45,799	15,179	Rudolfswerth	Novo mesto	IV-V	IC921 & ops
8	22	45,613	15,484	Ozalj	Ozalj	IV-V	Zg
8	22	45,827	14,881	Plešivice pri Žužembergu	Plešivica	IV-V	VRm
8	22	46,166	15,924	Radoboj	Radoboj	IV-V	Zg
8	22	45,748	15,389	Sošice	Sošice	IV-V	Zg
8	22	45,936	16,942	V. Trojstvo	Veliko Trojstvo	IV-V	Zg
8	22	46,339	16,156	Vinica	Vinica	IV-V	Zg
8	22	45,357	15,867	Vrginmost	Vrginmost	IV-V	Zg
8	22	46,029	15,915	Zabok	Zabok	IV-V	Zg
8	22	45,856	15,811	Zapresic	Zaprešić	IV-V	IC919 & ops
8	22	46,086	15,175	Zidani most	Zidani Most	IV-V	IC924
8	22	45,793	17,154	Zrinjska	Zrinska	IV-V	Zg
8	22	45,523	15,316	Adlešiči	Adlešiči	IV	IC417
8	22	46,022	16,269	Bedenica	Bedenica	IV	Zg
8	22	45,930	15,319	Bučka	Bučka	IV	IC417
8	22	45,797	14,363	Cerknica	Cerknica	IV	IC417
8	22	45,936	16,663	Cirkvena	Cirkvena	IV	Zg
8	22	45,748	16,617	Čazma	Čazma	IV	Zg
8	22	45,574	15,199	Črnomelj	Črnomelj	IV	IC417
ura UTC	min	zem. šir.	zem. dolž.	ime v viru	kraj	I EMS-98	vir
-------------	-----	-----------	------------	----------------------------------	------------------------------	----------	--------
hour UTC	min	latitude	longitudde	name in the source	name today	I EMS-98	source
8	22	45,755	15,063	Toplice	Dolenjske Toplice	IV	IC417
8	22	45,549	15,815	D. Kupčina	Donja Kupčina	IV	Zg
8	22	45,670	15,370	Drašiči	Drašiči	IV	IC417
8	22	45,447	15,506	Dugaresa	Duga Resa	IV	Zg
8	22	45,190	16,801	Dubica	Hrvatska Dubica	IV	Zg
8	22	46,223	16,130	Ivanec	Ivanec	IV	Zg
8	22	46,090	14,520	Ježica	Ježica	IV	IC417
8	22	45,910	16,127	Kašina	Kašina	IV	Zg
8	22	46,184	15,731	Kastel	Kostel	IV	Zg
8	22	45,653	15,522	Krašić	Krašić	IV	Zg
8	22	45,591	16,217	Lekenik	Lekenik	IV	Zg
8	22	46,050	14,585	D. M. v Polju	Ljubljana Polje	IV	IC274
8	22	45,360	14,757	Lokve	Lokve	IV	Zg
8	22	46,375	15,785	Sv. Lovrenc na Dravskem polju	Lovrenc na Dravskem polju	IV	IC924
8	22	46,318	15,672	Makole	Makole	IV	IC924
8	22	45,858	15,092	Mirna Peč	Mirna Peč	IV	IC417
8	22	45,779	15,505	Žumberačko Mrzlo Polje	Mrzlo Polje Žumberačko	IV	Zg
8	22	46,166	16,339	Novi Marof	Novi Marof	IV	Zg
8	22	45,685	16,240	Orle	Orle	IV	Zg
8	22	46,409	16,153	Friedau	Ormož	IV	IC919
8	22	45,681	14,201	Pivka	Pivka	IV	VRm
8	22	45,724	15,662	Plešivica	Plešivica	IV	IC417
8	22	45,734	15,205	Podgrad	Podgrad	IV	IC417
8	22	45,742	15,656	Prekrižje	Prekrižje	IV	Zg
8	22	46,066	15,189	Radeče	Radeče	IV	IC417
8	22	45,815	14,317	Rakek	Rakek	IV	IC417
8	22	46,189	16,322	Remetinec	Remetinec	IV	Zg
8	22	45,483	16,376	Sisak	Sisak	IV	Zg

ura UTC	min	zem. šir.	zem. dolž.	ime v viru	kraj	I EMS-98	vir
hour UTC	min	latitude	longitudde	name in the source	name today	I EMS-98	source
8	22	45,488	16,151	Farkašić	Stari Farkašić	IV	Zg
8	22	45,494	15,082	Stari trg pri Kočevju	Stari Trg ob Klopi	IV	IC274 & ops
8	22	45,796	15,782	Sv. Nedelja	Sveta Nedelja	IV	Zg
8	22	46,246	16,328	Sv. Ilija	Sveti Ilija	IV	Zg
8	22	45,977	15,095	Št. Rupert	Šentrupert	IV	IC417
8	22	46,168	14,308	Škofja Loka	Škofja Loka	IV	IC274
8	22	45,911	15,013	Trebnje	Trebnje	IV	IC500
8	22	45,395	15,624	Tušilović	Tušilović	IV	Zg
8	22	46,308	16,341	Varaždin	Varaždin	IV	Zg & ops
8	22	45,715	16,081	V. Gorica	Velika Gorica	IV	Zg
8	22	45,324	15,702	Vojnić	Vojnić	IV	Zg
8	22	45,963	14,298	Vrhnika	Vrhnika	IV	IC417
8	22	46,093	16,082	Zlatar	Zlatar	IV	Zg
8	22	46,231	15,990	Bednja	Bednja	III-IV	Zg
8	22	45,836	16,301	Brckovljani	Brckovljani	III-IV	Zg
8	22	45,686	16,357	Bregi	Bregi Dugoselski	III-IV	Zg
8	22	45,913	16,239	D. Zelina	Donja Zelina	III-IV	Zg
8	22	45,209	15,474	Primišlje	Donje Primišlje	III-IV	Zg
8	22	45,604	15,601	Draganići	Draganići	III-IV	Zg
8	22	45,914	16,483	Gradec	Gradec	III-IV	Zg
8	22	45,493	15,560	Kamensko	Kamensko	III-IV	Zg
8	22	46,025	16,550	Kreuz	Križevci	III-IV	Zg & ops
8	22	46,053	14,510	Laibach	Ljubljana	III-IV	IC928 & ops
8	22	45,510	15,416	Netretić	Netretić	III-IV	Zg
8	22	46,101	15,980	Orehovica	Orehovica	III-IV	Zg
8	22	45,668	16,833	Oštri Zid	Oštri Zid	III-IV	Zg
8	22	46,167	15,845	Petrovsko	Petrovsko	III-IV	Zg
8	22	45,639	14,582	Prezid	Prezid	III-IV	Zg

ura UTC	min	zem. šir.	zem. dolž.	ime v viru	kraj	I EMS-98	vir
hour UTC	min	latitude	longitudde	name in the source	name today	I EMS-98	source
8	22	45,373	14,939	Ravna Gora	Ravna Gora	III-IV	Zg
8	22	45,899	16,847	Grad Bjelovar	Bjelovar	111	Zg & ops
8	22	45,463	14,858	Brodkupa	Brod na Kupi	Ш	Zg
8	22	45,514	14,644	Gerovo	Gerovo	111	Zg
8	22	45,338	16,096	Glina	Glina		Zg
8	22	45,568	14,257	II. Bistrica	Ilirska Bistrica	111	IC417
8	22	46,163	16,837	Koprivnica	Koprivnica	111	Zg
8	22	45,228	16,546	Kostajnica	Kostajnica	111	Zg
8	22	45,917	14,234	D. Logatec	Logatec	111	IC417
8	22	46,168	16,313	Magjarevo	Madžarevo	111	Zg
8	22	46,076	16,956	Novigrad	Novigrad Podravski	111	Zg
8	22	45,684	16,255	Oborovo	Oborovo	111	Zg
8	22	45,529	14,703	Osilnica	Osilnica		IC154
8	22	45,523	16,135	Palanjek	Palanjek Pokup- ski		Zg
8	22	45,440	16,284	Petrinja	Petrinja		IC931 & ops
8	22	45,613	15,165	Petrova vas	Petrova vas	111	IC417
8	22	45,485	15,997	Pokupsko	Pokupsko		Zg
8	22	45,776	14,218	Postojna	Postojna	111	IC417
8	22	45,443	16,486	Prelošćica	Prelošćica		Zg
8	22	46,391	15,580	Slovenska Bistrica	Slovenska Bistrica		VRm
8	22	45,469	15,365	Prilišće	Srednje Prilišće	Ш	IC417
8	22	46,080	16,459	Sv. Petar Orahovec	Sveti Petar Ore- hovec	111	Zg
8	22	45,296	15,980	Topusko	Topusko	111	Zg
8	22	45,675	15,404	Vivodina	Vivodina	111	Zg
8	22	45,552	16,674	Voloder	Voloder		Zg
8	22	45,867	15,280	Bela cerkev	Bela Cerkev	čutili	IC921
8	22	46,058	15,668	Sv. Peter pod Sv. Gorami	Bistrica ob Sotli	čutili	IC921
8	22	46,289	15,043	Frasslau	Braslovče	čutili	VR233

ura UTC	min	zem. šir.	zem. dolž.	ime v viru	kraj	I EMS-98	vir
hour UTC	min	latitude	longitudde	name in the source	name today	I EMS-98	source
8	22	45,184	15,611	Cvijanović	Cvijanović Brdo	čutili	Zg
8	22	46,338	15,234	Neuhaus bei Cilli	Dobrna	čutili	IC919
8	22	45,723	15,900	Drežnik	Drežnik Brezovički	čutili	Zg
8	22	45,240	14,657	Drivenik	Drivenik	čutili	Zg
8	22	45,576	16,946	Garešnica	Garešnica	čutili	Zg
8	22	46,296	14,810	Gornjigrad	Gornji Grad	čutili	IC274
8	22	45,848	16,059	Granešina	Granešina	čutili	Zg
8	22	47,070	15,430	Gradec	Graz	čutili	IC921 & ops
8	22	45,371	14,465	Grobnik	Grobnik	čutili	Zg
8	22	45,326	16,302	Jabukovac	Jabukovac	čutili	Zg
8	22	45,193	15,292	Josipdol	Josipdol	čutili	Zg
8	22	45,350	16,083	Jukinac	Jukinac	čutili	Zg
8	22	46,626	14,308	Klagenfurt	Klagenfurt	čutili	IC919
8	22	45,643	14,864	Kočevje	Kočevje	čutili	IC274 & ops
8	22	45,311	14,559	Krasica	Krasica	čutili	Zg
8	22	46,157	15,243	Markt Tueffer	Laško	čutili	IC899 & ops
8	22	46,208	16,051	Lepoglava	Lepoglava	čutili	Zg
8	22	46,350	14,839	Laufen	Ljubno ob Savinji	čutili	VR233
8	22	46,357	14,748	Lantsch	Luče	čutili	VR233
8	22	45,918	16,692	Majur	Majur	čutili	Zg
8	22	45,652	15,325	Metlika	Metlika	čutili	IC274
8	22	45,943	15,154	Mokronog	Mokronog	čutili	IC921
8	22	46,338	14,963	Prassberg	Mozirje	čutili	VR233
8	22	45,588	15,864	Pisarovina	Pisarovina	čutili	Zg
8	22	46,211	15,667	Prišlin	Prišlin	čutili	Zg
8	22	46,327	14,853	St. Xaveri	Radmirje	čutili	VR233
8	22	46,325	14,928	Ries	Rečica ob Savinji	čutili	VR233
8	22	46,232	15,643	Rohitsch-Sauerb- runn	Rogaška Slatina	čutili	IC924 & ops

ura UTC	min	zem. šir.	zem. dolž.	ime v viru	kraj	I EMS-98	vir
hour UTC	min	latitude	longitudde	name in the source	name today	I EMS-98	source
8	22	46,225	15,710	Rogatec	Rogatec	čutili	IC921 & ops
8	22	45,509	16,310	Sela	Sela	čutili	Zg
8	22	46,108	16,714	Sokolovac	Sokolovac	čutili	Zg
8	22	45,382	15,552	Barilović	Barilović	I	List ZG (IS)
8	22	45,231	19,008	Berak	Berak	I	List ZG (IS)
8	22	45,386	16,640	Blagaj	Blagaj	I	List ZG (IS)
8	22	45,357	16,374	Blinja	Blinja	I	List ZG (IS)
8	22	44,224	16,020	Cerovac ?	Cerovac	I	List ZG (IS)
8	22	45,419	14,710	Crni Lug	Crni Lug	I	List ZG (IS)
8	22	45,596	14,651	Čabar	Čabar	I	List ZG (IS)
8	22	46,210	16,922	Drnje	Drnje	I	List ZG (IS)
8	22	45,071	16,385	Dvor	Dvor	I	List ZG (IS)
8	22	46,040	17,074	Đurđevac	Đurđevac	I	List ZG (IS)
8	22	46,061	17,197	Ferdinandovac	Ferdinandovac	I	List ZG (IS)
8	22	45,305	14,719	Fužine	Fužine	I	List ZG (IS)
8	22	45,339	15,377	Generalski Stol	Generalski Stol	I	List ZG (IS)
8	22	45,458	15,989	Gornja Bučica	Gornja Bučica	I	List ZG (IS)
8	22	45,399	16,542	Gradusa	Gradusa	I	List ZG (IS)
8	22	45,702	17,178	Grubišno Polje	Grubišno Polje	I	List ZG (IS)
8	22	45,653	17,012	Hercegovac	Hercegovac	I	List ZG (IS)
8	22	46,154	16,972	Hlebine	Hlebine	I	List ZG (IS)
8	22	45,399	16,294	Hrastovica	Hrastovica	I	List ZG (IS)
8	22	45,283	14,606	Hreljin	Hreljin	I	List ZG (IS)
8	22	45,213	15,543	Hrvatski Blagaj	Hrvatski Blagaj	I	List ZG (IS)
8	22	46,128	16,475	Kalnik	Kalnik	I	List ZG (IS)
8	22	45,739	16,422	Kloštar Ivanić	Kloštar Ivanić	I	List ZG (IS)
8	22	45,984	17,162	Kloštar Podravski	Kloštar Podravski	I	List ZG (IS)
8	22	45,328	16,291	Kraljevčani	Kraljevčani	I	List ZG (IS)

ura UTC	min	zem. šir.	zem. dolž.	ime v viru	kraj	I EMS-98	vir
hour UTC	min	latitude	longitudde	name in the source	name today	I EMS-98	source
8	22	45,274	14,574	Kraljevica	Kraljevica	I	List ZG (IS)
8	22	45,395	16,641	Kratečko	Kratečko	I	List ZG (IS)
8	22	45,335	15,604	Krnjak	Krnjak	I	List ZG (IS)
8	22	45,394	14,888	Kupjak	Kupjak	I	List ZG (IS)
8	22	45,479	16,781	Kutina	Kutina	I	List ZG (IS)
8	22	45,138	14,846	Ledenice	Ledenice	I	List ZG (IS)
8	22	45,360	15,352	Lešće na Dobri	Lešće na Dobri	I	List ZG (IS)
8	22	45,278	14,723	Lič	Lič	I	List ZG (IS)
8	22	44,996	15,445	Jasenica	Lička Jesenica	I	List ZG (IS)
8	22	46,254	16,620	Ludbreg	Ludbreg	I	List ZG (IS)
8	22	45,353	14,111	Lupoglav	Lupoglav	I	List ZG (IS)
8	22	45,284	16,145	Maja	Маја	I	List ZG (IS)
8	22	46,074	16,054	M. Bukovec	Mali Bukovec Zagorski	I	List ZG (IS)
8	22	45,882	16,404	Martinska Ves	Martinska Ves	I	List ZG (IS)
8	22	45,284	16,431	Mečenčani	Mečenčani	I	List ZG (IS)
8	22	45,129	15,246	Modruš	Modruš	I	List ZG (IS)
8	22	46,107	17,036	Molve	Molve	I	List ZG (IS)
8	22	45,440	16,361	Mešćenica	Moščenica	I	List ZG (IS)
8	22	45,799	16,958	Nova Rača	Nova Rača	I	List ZG (IS)
8	22	45,128	14,794	Novi	Novi Vinodolski	I	List ZG (IS)
8	22	45,226	15,282	Oštarije	Oštarije	I	List ZG (IS)
8	22	46,194	16,896	Peteranec	Peteranec	I	List ZG (IS)
8	22	45,953	17,238	Pitomača	Pitomača	I	List ZG (IS)
8	22	45,547	14,691	Plešce	Plešce	I	List ZG (IS)
8	22	46,003	17,218	Podravske Sesvete	Podravske Sesvete	I	List ZG (IS)
8	22	45,374	15,242	Ponikve	Ponikve	I	List ZG (IS)
8	22	45,300	14,576	Praputnjak	Praputnjak	I	List ZG (IS)
8	22	45,131	16,271	Rujevac	Rujevac	I	List ZG (IS)

ura UTC	min	zem. šir.	zem. dolž.	ime v viru	kraj	I EMS-98	vir
hour UTC	min	latitude	longitudde	name in the source	name today	I EMS-98	source
8	22	44,984	15,482	Saborsko	Saborsko	I	List ZG (IS)
8	22	45,432	14,910	Skrad	Skrad	I	List ZG (IS)
8	22	46,407	16,379	Slakovec	Slakovec	I	List ZG (IS)
8	22	45,116	15,593	Slunj	Slunj	I	List ZG (IS)
8	22	46,420	14,697	Sulzbach im Sannthale	Solčava	I	VR233
8	22	45,367	16,571	Sunja	Sunja	I	List ZG (IS)
8	22	45,611	17,018	Tomašica	Tomašica	I	List ZG (IS)
8	22	45,250	15,326	Tounj	Tounj	I	List ZG (IS)
8	22	45,756	17,055	Veliki Grđevac	Veliki Grđevac	I	List ZG (IS)
8	22	45,253	15,572	Veljun	Veljun	I	List ZG (IS)
8	22	45,834	17,389	Virovitica	Virovitica	I	IC919 & ops
8	22	45,145	15,337	Vojnovac	Vojnovac	I	List ZG (IS)
8	22	45,192	16,373	Zrin	Zrin	I	List ZG (IS)
8	22	46,158	17,120	Ždala	Ždala	I	List ZG (IS)
8	22	45,248	16,725	Živaja	Živaja	I	List ZG (IS)

Čeprav se nova parametrizacija potresa ne razlikuje bistveno od tiste, ki jo je leta 1982 v katalogu potresov objavil Ribarič, so podatki v tej raziskavi dobro dokumentirani, posamezni parametri pa določeni z večjo zanesljivostjo.

Brežiški potres nas opozori na dejstvo, ki ga radi pozabljamo: potresi z močnejšimi poškodbami so nekaj, na kar je v Sloveniji treba računati. Potresa ne moremo napovedati, ne moremo ga tudi preprečiti, lahko pa se na njega ustrezno pripravimo. Edina zanesljiva zaščita je potresno odporna gradnja novih in utrjevanje starih objektov, kot tudi poznavanje ustreznega obnašanja pred potresom, med in po njem.

Literatura

- ANNO AustriaN Newspapers Online : Historische österreichische Zeitungen und Zeitschriften online. http://anno.onb.ac.at.
- ARS glej Zapisniki o škodi.
- ARSO MsA glej Makroseizmični arhiv ARSO.
- Berus, M., 2017. Kartografska podpora študiji potresa v Brežicah 1917. Diplomska naloga, Univerza v Ljubljani, Fakulteta za gradbeništvo in geologijo.

- Cecić, I., 2016. Makroseizmične raziskave potresa 29. januarja 1917. V: Živčić, M., I. Cecić, M. Čarman, M. Godec, M. Lanjšček, J. Pahor: Zaključno poročilo projektne naloge Raziskave potresa 1917 Faza 2, Rev. 1, 24–43, ARSO.
- Dejak, V., 2017. Stoletnica brežiškega potresa (1917–2017). Govor ob odprtju razstave Posavskega muzeja Brežice, 29. 1. 2017.
- dLib Digitalna knjižnica Slovenije dLib.si. http://www.dlib.si.
- Grünthal, G., ur., 1998. European Macroseismic Scale 1998. Cahiers du Centre Européen de Géodynamique et de Séismologie, Vol. 15, 99 str.
- GURS, 2017. Katastrski načrt in katastrski podatki zemljiškega katastra. Brežice: Pisarna Geodetske uprave RS.
- GURS, 2017a. Reambulančni kataster za k.o. Brežice, Parcelni zapisnik (Parzellen Protokoll der Gemeinde Brežice). Brežice: Pisarna Geodetske uprave RS.
- Heritsch, F. in Schwinner, R., 1919. Über die Drehungen beim Ranner Erdbeben vom 29. Jänner 1917. Mitt. Erdbeben-Komm., N.F. No. 57. Akad. d. Wiss. Wien, Mathem.-naturwiss. Klasse, Wien.
- Ilustrirani glasnik, 15. 3. 1917, št. 28, str. 230-231.
- Judita Marolt, privatna zbirka, Brežice.
- Makroseizmični arhiv ARSO, Ljubljana (ARSO MsA).
- Nečak, D., 2016. Raziskave potresa 1917 pregled arhivov. Rokopis. Ljubljana, 234 str.
- Nečak, D. in Cecić, I., 2018. Bilo je res grozljivo, bobnelo in grmelo je pod nami: brežiški potres 1917. Brežiške študije, 5, 582 str.
- NSK Nacionalna i sveučilišna knjižnica u Zagrebu. http://www.nsk.hr.
- OCAD_:the smart software for kartography. https://www.ocad.com/en/.
- PMB, 2017 gradivo, ki ga hrani Posavski muzej Brežice.
- Počkar, I., 2005. Dve gasi, dva policaja, sto obrtnikov : življenje mestnih obrtnikov od sredine 19. stoletja do druge svetovne vojne na primeru Brežic. Brežiške študije 2, Brežice, 406 str.
- Ribarič, V., 1982. Seizmičnost Slovenije. Publikacije Seizmološkega zavoda SR Slovenije, Serija A, Št. 1-1, Ljubljana, 649 str.
- Tornquist, A., 1918. Das Erdbeben von Rann an der Save vom 29. Jänner 1927, Erster Teil, Mitteilungen der Erdbeben-Kommission, Neue Folge, Nr. 52, (Kais. Akad. d. Wiss., Math. naturwiss. Klasse), Wien.
- Vprašalniki za Hrvaško hrani jih Geofizički odsjek, Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu, Zagreb.
- Zapisniki o škodi, sign. Si AS Dež. predsedstvo za Kranjsko POTRESNI SPISI. Arhiv Republike Slovenije, Ljubljana (oznaka ARS).
- Živčić, M. in Cecić, I., 1998. Revised magnitudes of historical earthquakes in Slovenia. EGS XXXII General Assembly, Nice, France, 20-24 April 1998.

Najmočnejši potresi po svetu leta 2017 The World's Largest Earthquakes in 2017

Povzetek

Leta 2017 je bilo po svetu 39 potresov, ki so dosegli ali presegli navorno magnitudo (M,) 6,5. En potres je imel navorno magnitudo večjo ali enako 8,0, sedem potresov je imelo magnitudo med 7,0 in 7,9. Vsaj 33 potresov je zahtevalo človeška življenja, skupaj vsaj 1231 žrtev. Najmočnejši potres (M_{w} = 8,2) je nastal 8. septembra pod oceanskim dnom na območju Tehuantepeškega zaliva (južna obala Mehike) v globini 103 km. Največ žrtev je zahteval potres, ki se je zgodil 12. novembra v Iranu. Njegova magnituda je bila 7,3, zahteval je vsaj 630 življenj. Najmočnejši potres v Evropi z magnitudo 6,6 je 20. julija stresel območje Egejskega morja. Največ škode je povzročil na grškem otoku Kos. Niz potresov na območju osrednjih Apeninov, ki se je začel avgusta 2016, se je nadaljeval tudi januarja 2017. Magnituda štirih potresov, ki so se zgodili 18. januarja, je bila večja kot 5,0. Te so čutili tudi posamezniki v Sloveniji.

Abstract

In 2017 there were 39 earthquakes across the world that either reached or exceeded a moment magnitude (M_) of 6.5. One earthquake had a moment magnitude of greater than 8.0, and 7 were between 7.0 and 7.9. At least 33 earthquakes claimed human lives; in total there were at least 1231 victims. The most devastating earthquake took place on 12 November 2017 in Iran, where at least 630 people were killed. The 8 September 2017 earthquake in the Gulf of Tehuantepec, off the southern coast of Mexico, ranked highest in terms of the released energy, with a moment magnitude of 8.2. The strongest earthquake in Europe, with a moment magnitude of 6.6, struck in the Aegean Sea on 20 July 2017. The most damaged was the Greek island of Kos. A series of earthquakes in the central Apennines, which began in August 2016, continued into January 2017. Four earthquakes with a magnitude greater than 5.0 occurred on 18 January 2017. These earthquakes were also felt in Slovenia.

Uvod

Zemljina trdna lupina, debela povprečno okoli 100 km pod celinami in 50 km pod oceani, se imenuje litosfera in jo sestavlja več tektonskih plošč (slika 1), največje so Tihomorska, Severnoameriška, Južnoameriška, Evrazijska, Afriška, Avstralska in Antarktična. Za svetovno potresno dejavnost so pomembne tudi številne manjše plošče. Tektonske plošče se zaradi konvekcijskih tokov v astenosferi, viskozni plasti v Zemljinem plašču pod litosfero, nenehno počasi premikajo. Med seboj se lahko razmikajo (razmične ali divergentne meje), primikajo (primične ali konvergentne meje) ali drsijo druga ob drugi (zmične ali transformne meje plošč). Razmikanje tektonskih plošč lahko poteka na območju oceanov (vdiranje magme iz astenosfere skozi razpoko med ploščama, pri čemer se magma strjuje v novo oceansko skorjo in nastanejo oceanski grebeni) ali na celinah (tektonsko ugrezanje ob nastajanju razsežnega tektonskega jarka ali razpoke v celinski plošči, ki lahko v skrajnem primeru razpade na več delov). Na območjih primikanja plošč se oceanska plošča podriva pod drugo oceansko ali celinsko ploščo, lahko pa celinski plošči trčita, kar povzroči dviganje skorje in nastanek gorovij. Prelom, ob katerem plošči drsita druga ob drugi, imenujemo transformni ali medploščni zmični prelom (Lapajne, 2013).

Posledice gibanja celinskih in oceanskih plošč oziroma tektonike litosferskih plošč so burni geološki pojavi, kot so vulkani in potresi, ki nastajajo predvsem na stikih in v bližini stikov plošč. Če bi narisali nadžarišča oziroma epicentre vseh potresov, bi videli, da potresi nastajajo predvsem na stikih med posameznimi ploščami. Prav prostorska porazdelitev potresov je tudi razkrila potek mej ali stikov med ploščami in je bila pred približno petdesetimi leti eden najpomembnejših podatkov pri oblikovanju teorije tektonike litosferskih plošč. Na sliki 1 so

Slika 1: Porazdelitev najmočnejših potresov leta 2017 na Zemlji. Velikost krogov kaže potresno magnitudo, barva pa žariščno globino. Označene so tudi glavne tektonske plošče. *Figure 1*: Distribution of the strongest earthquakes in 2017. The size of the circle indicates the magnitude and the colour designates the focal depth. The main tectonic plates are also shown.

narisani potresi, ki so leta 2017 dosegli ali presegli navorno magnitudo 6,5 (5,5 za evropsko-sredozemsko območje), in tisti šibkejši, ki so zahtevali človeška življenja. Navorna magnituda je mera za velikost potresa, ki velja za najmočnejše potrese in je določena s potresnim navorom. Ta je definiran kot zmnožek strižnega modula kamnine prelomnega območja, površine potresnega pretrga in povprečne velikosti zdrsa vzdolž preloma. Lahko ga izračunamo iz zapisov potresnega valovanja ali iz geoloških opazovanj (Lapajne, 2013).

Pregled najmočnejših potresov

V preglednici 1 so podatki o najmočnejših potresih leta 2017 (NEIC, 2018a; NEIC, 2018b; List of earthquakes in 2017, 2019). Našteti so tisti, ki so dosegli ali presegli navorno magnitudo 6,5 (5,5 za evropsko-sredozemsko območje), in tisti šibkejši (19), ki so zahtevali človeška življenja. Za vsak potres so navedeni datum (mesec, dan), žariščni čas po svetovnem času – UTC (ura, minuta), koordinati nadžarišča (zemljepisna širina (°), zemljepisna dolžina (°)), globina žarišča (km) in navorna magnituda (M_w). V stolpcu o številu žrtev je navedeno skupno število žrtev in pogrešanih za posamezen potres. Preglednica se konča z imenom širšega nadžariščnega območja potresa.

Leta 2017 je bilo 39 potresov, ki so dosegli ali presegli navorno magnitudo 6,5. En potres je imel navorno magnitudo večjo od 8,0, sedem pa jih je bilo z magnitudo med 7,0 in 7,9, kar pomeni, da leto 2017 nekoliko odstopa navzdol od dolgoletnega povprečja. V obdobju 1990–2016 se je v povprečju vsako leto zgodil en potres z magnitudo večjo ali enako 8,0, 15 pa jih je imelo magnitudo med 7,0 in 7,9 (slika 2; NEIC, 2018c). Leta 2017 je triintrideset potresov zahtevalo vsaj 1231 človeških življenj.

Preglednica 1: Seznam potresov leta 2017, katerih navorna magnituda M_w je bila enaka ali večja od 6,5 (5,5 za evropsko-sredozemsko območje). Dodani so potresi, katerih magnituda je bila sicer manjša, a so zahtevali smrtne žrtve.

Table 1: List of the 2017 earthquakes with a moment magnitude (M_w) equal to or greater than 6.5 (5.5 for the European-Mediterranean region). Earthquakes with magnitudes below 6.5 which claimed human lives are also included. S = North; J = South; V = East; Z = West.

datum	čas (UTC)	as FC) koordinati globina mag. števil		število	ahmačia			
uatum	ura.min	širina (°)	n (°) dolžina (°) km M _w Žrtev		žrtev	obmocje		
data	time (UTC) coordinates depth mag. number							
date	hh.min	lat (°)	lon (°)	km	km M _w	victims	area	
3. 1.	9.09	24,02 S	92,02 V	32	5,7	3	Ambasa, Indija	
3. 1.	21.52	19,37 J	176,05 V	12	6,9		pod morskim dnom, območje Fidžija	
6. 1.	2.33	28,20 S	53,11 V	10	5,0	4	Qīr, Iran	
10. 1.	6.13	4,48 S	122,62 V	627	7,3		pod morskim dnom, Celebeško morje	
18. 1.	10.14	42,60 S	13,22 V	7	5,7	34	Amatrice, Italija	
18. 1.	10.25	42,58 S	13,19 V	10	5,6		Amatrice, Italija	

d e fe une	čas (UTC)	kooi	rdinati	globina	mag.	število	a hana žia
datum	ura.min	širina (°)	dolžina (°)	km	M _w	žrtev	ортосје
	time (UTC)	coord	dinates	depth	mag.	number	
date	hh.min	lat (°)	lon (°)	km	km M _w	of victims	area
19. 1.	23.04	10,35 J	161,34 V	36	6,5		Kirakira, Salomonovi otoki
22. 1.	4.30	6,25 J	155,17 V	135	7,9	3	Panguna, Papua Nova Gvineja
10. 2.	14.03	9,91 S	125,45 V	15	6,5	8	pod morskim dnom, blizu kraja Mabua, Filipini
21. 2.	14.09	19,28 J	63,91 Z	596	6,5		Padilla, Bolivija
24. 2.	17.28	23,26 J	178,80 Z	415	6,9		pod morskim dnom, območje Fidžija
5. 3.	0.08	9,83 S	125,50 V	11	5,7	1	Surigao, Filipini
13. 3.	14.19	17,40 S	96,00 V	10	5,1	2	Tharrawaddy, Mjanmar
24. 3.	18.10	30,28 S	31,93 V	2	4,1	1	Suez, Egipt
29.3.	4.09	56,94 S	162,79 V	17	6,6		Kamčatka, Rusija
3.4.	17.40	22,68 J	25,16 V	29	6,5		Bocvana
5.4.	6.09	35,78 S	60,44 V	13	6,1	2	Torbat-e Jām, Iran
10. 4.	23.53	13,77 S	89,16 Z	10	4,8	1	Soyapango, Salvador
24.4.	21.38	33,04 J	72,06 Z	28	6,9		pod morskim dnom, blizu Valparaisa, Čile
28. 4.	20.23	5,50 S	125,07 V	26	6,9		pod morskim dnom, blizu Buriasa, Filipini
9. 5.	13.52	14,59 J	167,38 V	169	6,8		pod morskim dnom, območje otočja Vanuatu
10. 5.	21.58	37,64 S	75,31 V	8	5,4	8	Sinkiang, Kitajska
10. 5.	23.23	56,41 J	25,74 Z	15	6,5		pod morskim dnom, območje Južne Georgije in Južnih Sandwichevih otokov
13. 5.	18.01	37,77 S	57,21 V	8	5,6	3	Bojnurd, Iran
25. 5.	9.55	3,04 J	32,89 V	10	4,4	1	Misasi, Tanzanija
29. 5.	14.35	1,29 J	120,43 V	12	6,6		Kasiguncu, Indonezija
2. 6.	22.24	54,03 S	170,92 V	5	6,8		pod morskim dnom, Aleutska kotanja
12. 6.	12.28	38,93 S	26,37 V	12	6,3	1	pod morskim dnom, južno od otoka Lezbos, Grčija
14.6.	7.29	14,91 S	92,01 Z	93	6,9	5	Malacatán, Gvatemala
22. 6.	12.31	13,72 S	90,97 Z	38	6,8		pod morskim dnom, jugozahodno od mesta Puerto San Jose, Gvatemala
6.7.	8.03	11,13 S	124,63 V	9	6,5	4	Masarayao, Filipini
11. 7.	7.00	49,48 J	164,02 V	10	6,6		pod morskim dnom, blizu Otočja Auckland
17.7.	23.34	54,44 S	168,86 V	10	7,7		pod morskim dnom, območje Aleutskega jarka
18. 7.	2.05	16,42 J	73,64 Z	44	6,4	1	pod morskim dnom, blizu mesta Atico, Peru

d a fe una	čas (UTC)	koor	dinati	globina	mag.	število	- h X'
datum	ura.min	širina (°)	dolžina (°)	km	M _w	žrtev	оршосје
	time (UTC)	coord	dinates	depth	mag.	number	
date	hh.min	lat (°)	lon (°)	km	km M _w	of victims	area
20.7.	22.31	36,93 S	27,41 V	7	6,6	2	pod morskim dnom, blizu grškega otoka Kos
2. 8.	7.15	33,21 J	70,62 Z	92	5,4	1	Santiago, Čile
8. 8.	13.19	33,19 S	103,86 V	9	6,5	25	Sečuan, Kitajska
11. 8.	21.45	16,30 J	73,47 Z	41	5,6	1	pod morskim dnom, blizu Atica, Peru
18. 8.	2.59	1,11 J	13,66 Z	35	6,6		pod morskim dnom, severno od otoka Ascension
21. 8.	18.57	40,78 S	13,94 V	3	4,2	2	pod morskim dnom, blizu otoka Ischia, Italija
22. 8.	22.26	10,95 S	124,70 V	17	5,0	2	Talisayan, Tajska
8. 9.	4.49	15,02 S	93,90 Z	47	8,2	98	pod morskim dnom, Tehuantepeški zaliv, Mehika
19. 9.	18.14	18,55 S	98,49 Z	48	7,1	370	Ayutla, Mehika
23. 9.	12.53	16,63 S	95,08 Z	10	6,1	6	Ixtepec, Mehika
8. 10.	22.34	52,39 S	176,77 V	119	6,5		pod morskim dnom, območje Aleutov
10. 10.	18.53	54,26 J	8,61 V	9	6,7		pod morskim dnom, blizu Bouvetovega otoka
24. 10.	10.47	7,22 J	123,07 V	554	6,7		pod morskim dnom, Floreško morje
31. 10.	0.42	21,70 J	169,15 V	24	6,7		pod morskim dnom, vzhodno od Nove Kaledonije
31. 10.	11.50	3,75 J	127,75 V	6	6,1	1	pod morskim dnom, blizu otoka Kota Ambon, Indonezija
1. 11.	2.23	21,65 J	168,86 V	22	6,6		pod morskim dnom, v bližini Nove Kaledonije
4. 11.	9.00	15,32 J	173,17 Z	10	6,8		pod morskim dnom, območje Tonge
7. 11.	21.26	4,24 J	143,49 V	111	6,5		Angoram, Papua Nova Gvineja
12. 11.	18.18	34,91 S	45,96 V	19	7,3	630	meja Iran - Irak
13. 11.	2.28	9,52 S	84,49 Z	19	6,5	3	pod morskim dnom, blizu kraja Parrita, Kostarika
18. 11.	16.07	2,47 S	128,15 V	8	5,8	1	pod morskim dnom, blizu otoka Halmahera, Indonezija
19. 11.	15.09	21,50 J	168,60 V	13	6,6		pod morskim dnom, v bližini Nove Kaledonije
19. 11.	22.43	21,33 J	168,67 V	10	7,0		pod morskim dnom, v bližini Nove Kaledonije
30. 11.	6.32	1,08 J	23,43 Z	10	6,5		Srednjeatlantski hrbet
13. 12.	18.03	54,22 J	2,16 V	17	6,5		pod morskim dnom, blizu Bouvetovega otoka
15. 12.	16.47	7,49 J	108,17 V	90	6,5	4	Kampungbaru, Indonezija
20. 12.	19.57	35,65 S	50,96 V	10	4,9	2	Malārd, Iran
26. 12.	21.24	35,72 S	51,26 V	10	4,0	1	Teheran, Iran

Slika 2: Število potresov v posameznem letu (1990–2017) z navorno magnitudo med 7,0 in 7,9 (NEIC, 2018c)

Figure 2: Annual number of earthquakes with a moment magnitude of between 7.0 and 7.9 for the period 1990-2017 (NEIC, 2018c).

Septembra 2017 sta dva močna potresa stresla Mehiko (slika 3). Prvi se je zgodil 8. septembra ob 4.49 po UTC (7. 9. ob 23.49 po lokalnem času). Z navorno magnitudo 8,2 je bil to najmočnejši potres leta 2017 na svetu in hkrati najmočnejši potres z žariščem v Mehiki v zadnjih 230 letih (Najmočnejši znan potres na območju Mehike je potres leta 1787 z ocenjeno magnitudo 8,6.). Žarišče potresa je bilo pod morskim dnom v Tehuantepeškem zalivu, 90 kilometrov jugozahodno od mesta El Palmarcito. Potres je sprožil tudi cunami, z največjo višino valov 1,75 metra vzdolž obale zvezne države Chiapas. Največ škode je povzročil v dveh najrevnejših mehiških zveznih državah Chiapas in Oaxaca, kjer je življenje izgubilo 98 ljudi. Veliko preplaha je povzročil tudi v glavnem mestu Cuidad de México, oddaljenem približno 750 kilometrov od nadžarišča potresa (2017 Chiapas earthquake, 2019; NEIC, 2017a).

Drugi potres se je zgodil 19. septembra ob 18.14 po UTC (ob 13.14 po lokalnem času) z navorno magnitudo 7,1. Žarišče potresa je bilo v bližini mesta Ayutla v zvezni državi Puebla, približno 100 kilometrov jugovzhodno od Cuidad de Méxica. Veliko škode je bilo v zveznih državah Puebla in Morelos ter na širšem območju mehiškega glavnega mesta, kjer se je zrušilo vsaj 40 zgradb (slika 4) in umrlo 370 ljudi. Potres se je zgodil ravno na 32. obletnico potresa leta 1985 z navorno magnitudo 8,0, ki je v glavnem mestu povzročil ogromno škode in zahteval več tisoč življenj (1985 Mexico City earthquake, 2019; 2017 Central Mexico earthquake, 2019; NEIC, 2017b).

Potresa sta nastala na območju, kjer se plošča Kokos podriva pod Severnoameriško ploščo. Ker sta se zgodila v razmeroma kratkem časovnem intervalu, se je takoj zastavilo vprašanje, ali je prvi sprožil drugega. Po osnovnih kriterijih, s katerimi seizmologi povezujemo potrese med seboj, ne. Mehika je velika država, razprostira se čez skoraj 2 milijona km2 (po površini je na 15. mestu med vsemi državami), kar ustreza približno površini 97 Slovenij. Nadžarišči sta bili daleč narazen (650 km; kar je približno zračna razdalja npr. med Ljubljano in Cannom v Franciji, Ljubljano in Tarantom v italijanski Apuliji, Ljubljano in Nišem v Srbiji ali Ljubljano in Užgorodom v Ukrajini). Zato je verjetnost, da bi se lahko zaradi prerazporeditve napetosti pri prvem potresu povečala možnost sprožitve drugega, majhna. Takšno delovanje se predvideva v polmeru do štirikratnika dolžine preloma, ki se ob potresu aktivira. Pri potresu 8. septembra se je aktiviral

Slika 3: Lokaciji dveh potresov v Mehiki septembra 2017 (© Google) *Figure 3*: Two earthquakes in Mexico in September 2017 (© Google).

Slika 4: Poškodovana zgradba v Cuidad de México (vir: https://en.wikipedia.org/wiki/2017_Central_Mexico_earthquake) *Figure 4*: Collapsed building in Mexico City. (Source: https://en.wikipedia.org/wiki/2017_Central_Mexico_earthquake)

prelom dolžine približno 100 kilometrov. Druga možnost je, da sami potresni valovi, ko potujejo čez določeno območje, povečajo verjetnost nastanka potresa (dinamično proženje, angl. dynamic triggering), vendar se to zgodi kmalu po prvem potresu (nekaj ur do dni). V tem primeru pa je 12-dnevna vrzel predolga, da bi lahko z gotovostjo govorili o povezavi med potresoma (Witze, 2017). Največ žrtev (630) je leta 2017 zahteval potres, ki se je zgodil 12. novembra ob 18.18 po UTC (ob 21.48 po lokalnem iranskem času) v Iranu, blizu meje z Irakom. Magnituda potresa je bila 7,3, njegovo nadžarišče pa 20 kilometrov severovzhodno od kraja Ezgeleh na območju nariva Zagros. Gorovje Zagros je največje gorovje v Iranu in Iraku, skupaj dolgo 1500 kilometrov (slika 5), ki je nastalo v miocenu s trkom dveh celinskih plošč, Arabske in Evrazijske. Začne se v severozahodnem Iranu, sledi približno poteku njegove zahodne meje in se nadaljuje proti jugovzhodu ter konča pri Hormuški ožini. Njegov najvišji vrh je Dena s 4409 metri nadmorske višine. Gorovje se še vedno dviguje, saj je kolizija plošč še vedno aktivna. Arabska plošča se giblje proti severu glede na Evrazijsko ploščo s hitrostjo 26 mm/leto.

Novembrski potres se je zgodil v severnem delu gorovja, ki poleg province Kermanshah, kjer je povzročil največ škode, obsega še province Zahodni Azerbajdžan, Kurdistan, Hamedan, Ilam, Lorestan, Kuzistan, Chaharmahal va Bakhtiari. Čeprav je bilo nadžarišče potresa blizu meje z Irakom, je največ škode povzročil v Iranu. Porušenih ali poškodovanih je bilo preko 27.000 zgradb, več kot 70.000 ljudi je ostalo brez strehe nad glavo. Potres so čutili vse do Izraela, Turčije in Arabskega polotoka. V polmeru 250 kilometrov od nadžarišča so se v zadnjih sto letih zgodili štirje potresi z magnitudo, večjo od 6,0, zadnji med njimi januarja 1967 (magnituda 6,1). Nobeden med njimi ni povzročil večje škode, saj je to območje redko naseljeno. Junija 1990 pa se je 400 kilometrov proti severovzhodu od tokratnega nadžarišča zgodil potres z magnitudo 7,4, ki je zahteval 40.000 do 50.000 življenj in opustošil provinci Gilan in Zanjan (2017 Iran-Iraq earthquake, 2019; NEIC, 2017c; Zagros, 2017).

Slika 5: Topografska karta z gorovjem Zagros, na katero je dodana lokacija potresa 12. novembra 2017. (vir: https://sl.wikipedia.org/wiki/Zagros)

Figure 5: Topographic map of the Zagros Mountains, to which the location of the earthquake on 12 November 2017 has been added. (Source: https://sl.wikipedia.org/wiki/Zagros)

Najmočnejši potres leta 2017 v Evropi se je zgodil 20. julija ob 22.31 po UTC (ob 1.31 po lokalnem času) z žariščem pod Egejskim morjem v bližini grškega otoka Kos in 10 kilometrov od Bodruma, Turčija. Magnituda potresa je bila 6,6, globina pa 7 kilometrov. Največ škode je povzročil na Kosu. Pod porušenim stropom nekega bara v centru Kosa sta dve osebi izgubili življenje, še pet je bilo huje ranjenih. Potres je sprožil tudi cunami, z največjo višino valov 1,9 metra, ki je povzročil nekaj škode vzdolž obale Kosa in na območju Bodruma (2017 Agean Sea Earthquake, 2019).

Vzdolžni oziroma longitudinalni potresni valovi, ki potujejo skozi Zemljin plašč tik pod Mohorovičićevo diskontinuiteto, so od žarišča do Ljubljane potovali približno tri minute in 10 sekund. Na sliki 6 je prikazan 10-minutni trikomponentni zapis tega potresa na opazovalnici v Ljubljani (LJU), eni zmed 26 opazovalnic državne mreže potresnih opazovalnic (Vidrih in drugi, 2006), ki je od nadžarišča oddaljena približno 1476 kilometrov.

Slika 6: Trikomponentni zapis potresa 20. julija 2017 magnitude 6,6 v Egejskem morju na opazovalnici v Ljubljani (LJU). Prikazan je 10-minutni zapis.

Figure 6: Three-component seismogram of the earthquake on 20 July 2017 (MW = 6.6) in the Aegean Sea, as recorded at the station in Ljubljana (LJU). The figure shows a 10-minute record.

Niz potresov na območju osrednjih Apeninov, ki se je začel s potresom 24. avgusta 2016 (Jesenko, 2017), se je nadaljeval tudi januarja 2017. Osemnajstega januarja so se zgodili / nastali štirje potresi z magnitudo večjo od 5,0, njihovo nadžarišče pa je bilo nekaj kilometrov zahodno od mesta Amatrice. Prvi potres ob 9.25 po UTC (10.25 po lokalnem času) je imel navorno magnitudo 5,3, drugi (ob 10.14 po UTC) 5,7, tretji (ob 10.25 po UTC) 5,6 in četrti (ob 13.33 po UTC) 5,2. Te štiri potrese so čutili tudi posamezniki v Sloveniji.

V potresih je pet oseb izgubilo življenje, v preglednici 1 so navedeni pri najmočnejšem potresu izmed njih. Zraven je pripisanih tudi 29 žrtev snežnega plazu na gori Gran Sasso, ki je zvečer tega dne popolnoma zasul hotel v Rigopianu, čeprav je težko določiti pravi vzrok sprožitve plazu. Na tem območju je več dni snežilo, snežna odeja se je znatno odebelila in nevarnost proženja plazov je bila že tako zelo velika. Morda so potresi le dodatno poslabšali stabilnost snežne odeje, kar je v kombinaciji z nadaljnjim slabim vremenom pomenilo zelo črn scenarij (January 2017 central Italy Earthquakes, 2019; Vrhovec, 1989).

Še en potres v Italiji je zahteval človeška življenja. Enaindvajsetega avgusta se je ob 18.57 po UTC (20.57 po lokalnem času) zatreslo v bližini italijanskega otoka Iscia, potres je imel magnitudo 4,2. Na Iscii se je več zgradb in cerkev porušilo, pod ruševinami sta umrli dve osebi (2017 Iscia earthquake, 2019).

Sklepne misli

Leta 2017 je bilo 62 potresov, ki so dosegli ali presegli navorno magnitudo 6,5 (5,5 za evropsko-sredozemsko območje) ali pa zahtevali človeška življenja. Skupaj so zahtevali vsaj 1231 življenj. Več kot polovico teh je zahteval potres, ki je novembra prizadel Iran. Najmočnejši potres v Evropi (M_w = 6,6) je stresel Egejsko morje. Veliko preplaha je povzročil tudi v Sloveniji, saj se je zgodil med poletnimi počitnicami, ki jih je marsikateri Slovenec preživel na grških otokih ali turški obali.

Literatura

- 1985 Mexico City earthquake. Wikipedia [online] (posodobljeno 16. 5. 2019). https://en.wikipedia.org/ wiki/1985_Mexico_City_earthquake (uporabljeno 16. 5. 2019).
- 2017 Aegean Sea earthquake. Wikipedia [online] (posodobljeno 11. 3. 2019). https://en.wikipedia.org/ wiki/2017_Aegean_Sea_earthquake (uporabljeno 16. 5. 2019).
- 2017 Central Mexico earthquake. Wikipedia [online] (posodobljeno 25. 4. 2019). https://en.wikipedia.org/ wiki/2017_Central_Mexico_earthquake (uporabljeno 16. 5. 2019).
- 2017 Chiapas earthquake. Wikipedia [online] (posodobljeno 4. 5. 2019). https://en.wikipedia.org/wiki/2017_ Chiapas_earthquake (uporabljeno 16. 5. 2019).
- 2017 Iran-Iraq earthquake. Wikipedia [online] (posodobljeno 25. 4. 2019). https://en.wikipedia.org/ wiki/2017_Iran%E2%80%93Iraq_earthquake (uporabljeno 16. 5. 2019).
- 2017 Iscia earthquake. Wikipedia [online] (posodobljeno 13. 4. 2019). https://en.wikipedia.org/wiki/2017_ Ischia_earthquake (uporabljeno 16. 5. 2019).
- January 2017 Central Italy earthquakes. Wikipedia [online] (posodobljeno 13. 3. 2019). https:// en.wikipedia.org/wiki/January_2017_Central_Italy_earthquakes (uporabljeno 16. 5. 2019).
- Jesenko, T., 2017. Najmočnejši potresi po svetu leta 2016, Ujma 31, 72-77.
- Lapajne, J., 2013. Inženirsko-seizmološki terminološki slovar [Elektronski vir], Amebis d.o.o., Kamnik in Agencija RS za okolje, Ljubljana (Zbirka Termania). http://www.termania.net/slovarji/131/seizmolo-ski-slovar.
- List of earthquakes in 2017. Wikipedia [online] (posodobljeno 16. 5. 2019). https://en.wikipedia.org/wiki/ List_of_earthquakes_in_2017 (uporabljeno 16. 5. 2019).
- NEIC, 2017a. M8.2 101 km SSW of Tres Picos, Mexico. US Department of the Interior. Geological Survey, National Earthquake Information Center. https://earthquake.usgs.gov/earthquakes/eventpage/us2000ahv0#executive (uporabljeno 16. 5. 2019).
- NEIC, 2017b. M7.1 1km E of Ayutla, Mexico. US Department of the Interior. Geological Survey, National Earthquake Information Center. https://earthquake.usgs.gov/earthquakes/eventpage/ us2000ar20#executive (uporabljeno 16. 5. 2019).
- NEIC, 2017c. M7.3 29km S of Halabjah, Iraq. US Department of the Interior. Geological Survey, National Earthquake Information Center. https://earthquake.usgs.gov/earthquakes/eventpage/ us2000bmcg#executive (uporabljeno 16. 5. 2019).

- NEIC, 2018a. 2016 Significant Earthquakes 2017. US Department of the Interior. Geological Survey, National Earthquake Information Center. https://earthquake.usgs.gov/earthquakes/browse/significant. php?year=2017 (uporabljeno 16. 5. 2019).
- NEIC, 2018b. Search Earthquake Catalogue. US Department of the Interior. Geological Survey, National Earthquake Information Center. http://earthquake.usgs.gov/earthquakes/search/ (uporabljeno 16. 5. 2019).
- NEIC, 2018c. Earthquake Statistics. US Department of the Interior. Geological Survey, National Earthquake ke Information Center. https://earthquake.usgs.gov/earthquakes/browse/stats.php (uporabljeno 16. 5. 2019).
- Vidrih, R., Sinčič, P., Tasič, I., Gosar, A., Godec, M., Živčić, M., 2006. Državna mreža potresnih opazovalnic. Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana, 287.
- Vrhovec, T., 1989. O proženju snežnih plazov. Ujma 3, 76-78.
- Witze, A., 2017. Pair of deadly Mexico quakes puzzles scientists. Nature. doi:10.1038/nature.2017.22650. ISSN 1476-4687. http://www.nature.com/news/pair-of-deadly-mexico-quakes-puzzles-scientists-1.22650
- Zagros. Wikipedia [online] (posodobljeno 16. 1. 2017). https://sl.wikipedia.org/wiki/Zagros (uporabljeno 16. 5. 2019).

Martina Čarman, Ina Cecić, Romea Krapež

Seizmološka knjižnica Agencije Republike Slovenije za okolje The Seismological Library of the Slovenian Environment Agency

Povzetek

Seizmološka knjižnica Agencije Republike Slovenije za okolje je edina seizmološka specialna knjižnica v Sloveniji in je nastajala vrsto let. Zametki knjižnice segajo v 19. stoletje, ko je Albin Belar, prvi slovenski seizmolog, začel zbirati gradivo s področja seizmologije, urejal strokovno revijo Die Erdbebenwarte in v njej tudi objavljal. Knjige in revije so se kasneje zbirale pod okriljem Seizmološkega zavoda SRS, po osamosvojitvi Slovenije Seizmološkega zavoda RS ter od leta 1994 pod Upravo RS za geofiziko. Kasneje, leta 2001, je knjižnična zbirka postala last ARSO. V tem času je nastala bogata zbirka knjig, revij in poročil s seizmološkega področja, ki danes predstavlja edinstveno, specialno ter hkrati študijsko-raziskovalno seizmološko knjižnico na slovenskih tleh.

Abstract

Seismological library at ARSO (Slovenian Environment Agency) is the only specialised seismological library in Slovenia. The origins of the library date back to the 19th century, when Albin Belar, the first Slovenian seismologist, started to collect books and studies on seismology. He was the editor of the seismological journal Die Erdbebenwarte and among the authors. Books and magazines were later collected under the patronage of Office of Seismology of SRS, after the independence of Slovenia under the patronage of Office of Seismology of RS and after 1994 under the patronage of Office of Geophysics of RS. In 2001, the seismological library became the property of a newly established agency, ARSO. Rich collection of books, journals and reports on seismology and adjacent fields is open to researchers and students.

Zgodovina seizmološke knjižnice

V Sloveniji se edina knjižnica specializirana za seizmologijo nahaja na Agenciji Republike Slovenije za okolje (ARSO), na Vojkovi 1b v Ljubljani. Ponaša se z bogato zbirko knjig, revij in poročil s seizmološkega področja.

Začetki seizmološke knjižnice segajo v 19. stoletje, ko je v stavbi takratne Višje cesarsko-kraljeve realke na Vegovi ulici v Ljubljani, danes Elektrotehniško-računalniške strokovne šole in gimnazije Ljubljana, na naslovu Vegova ulica 4 v Ljubljani, začela delovati prva potresna opazovalnica na ozemlju Avstro-Ogrske monarhije. Vodja opazovalnice je bil Albin Belar, ki je tako postal prvi slovenski seizmolog. Bil je izredno aktiven in svetovno znan, med ostalim je v letih 1901–1910 urejal in izdajal strokovno revijo Die Erdbebenwarte, v kateri so objavljali najvidnejši seizmologi tistega časa. Belar je v tem obdobju zbiral strokovno gradivo; žal se je zbirka po njegovi smrti razkropila, nekatere njegove knjige smo pozneje kupovali tudi po antikvariatih.

Pravi zagon je seizmologija in s tem seizmološka knjižnica, doživela v 50-tih letih prejšnjega stoletja, ko je v službo na Astronomsko-geofizikalni observatorij v Ljubljani na Golovcu prišel Vladimir Ribarič. Kot velik bibliofil je skozi leta zbral obsežno zbirko strokovne literature o potresih, kot tudi o ostalih geoznanostih.

Del knjig in revij je pridobljen tudi z izmenjavo tiskanih publikacij, kot je bilo takrat v navadi. Knjižnica se je nahajala v prostorih Observatorija, ki si jih je delila z astronomsko knjižnico. V 90-tih sta se knjižnici fizično ločili. Nekaj gradiva, predvsem o inženirski seizmologiji, se je nahajalo tudi v pisarnah Seizmološkega zavoda SR/R Slovenije oz. kasneje Uprave RS za geofiziko na Kersnikovi ulici 3 v Ljubljani.

Leta 2001, je bila pri selitvi takratne Uprave RS za geofiziko (URSG) v stavbo Astre, na Dunajsko cesto 47 v Ljubljani, preseljena tudi knjižnica. Še istega leta, kmalu po selitvi, je sledila ustanovitev Agencije Republike Slovenije za okolje (ARSO) s sedežem na Vojkovi 1b. URSG je postala sestavni del ARSO in bila preimenovana v Urad za seizmologijo in geologijo, toda seizmološka knjižnica je, tako kot urad, ostala na Dunajski.

Do selitve v stavbo na Vojkovi 1b je prišlo novembra 2015 (slika 1). Pred selitvijo smo se soočili z dejstvom, da zaradi prostorske stiske ne moremo preseliti celotnega korpusa knjižnice. Zato smo se lotili pregledovanja gradiva. Pod vodstvom Ine Cecić je bilo vse gradivo pregledano. Gradivu, ki smo ga obdržali, smo določili ključne besede. Odpisani so bili predvsem odvečni izvodi knjig in revij, zastarela literatura brez strokovne vrednosti, gradivo drugih strok, ki ni povezano s seizmologijo (včasih je pri kupovanju strokovne literature bilo mogoče kupiti le pakete, ki so poleg želenih knjig vsebovali še druge), kot tudi knjige, ki so dostopne tudi v splošnih knjižnicah. Ocenjujemo, da smo pri tem obseg knjižničnega gradiva zmanjšali za 40–50 %.

Knjižnica ima računalniški katalog, medtem ko je bil listkovni izgubljen pri zadnji selitvi. Od leta 2005 sodelujemo v slovenskem vzajemnem knjižničnem katalogu COBISS, v katerega sproti vnašamo podatke o novih pridobitvah, postopno pa tudi starejše knjižno gradivo. Seizmološka knjižnica ima siglo 50034 in šifro URSG. V lokalno bazo knjižnice se lahko vstopa prek spletnega portala COBISS (http://www.cobiss.si).

Slika 1: Prostori seizmološke knjižnice ARSO na Vojkovi 1b v Ljubljani *Figure 1*: Facility of Seismological Library of the Slovenian Environment Agency at Vojkova 1b in Ljubljana

Gradivo knjižnice

Celotna zbirka monografij, poročil in periodičnih publikacij s področja seizmologije obsega približno 2200 enot, od tega 1750 knjig, 450 poročil in elaboratov in trenutno naročene 4 domače ter 4 tuje revije v papirni obliki. Leta 2009 je v knjižnico prihajalo 38 revij. Del gradiva knjižnice, predvsem podatkovni viri o potresih v Sloveniji, je shranjen v Makroseizmičnem arhivu na isti lokaciji.

Spodaj so našteta nekatera dela, ki jih lahko najdemo na knjižnih policah. Med starejšim gradivom knjižnica hrani precej dragocenih redkosti, ki imajo veliko zgodovinsko vrednost, med novejšimi pa omenjamo poročila in knjige slovenskih seizmologov ter mednarodne kakovostne seizmološke revije z dolgoletno tradicijo.

<text><text><text><text><text><text><text><text><text>

A. Belar, Die Erdbebenwarte : Monatsschrift, Laibach, 1901–1910.

Albin Belar, prvi slovenski seizmolog, je bil ustanovitelj in izdajatelj seizmološkega mesečnika Die Erdbebenwarte (Potresna opazovalnica). Revija je začela izhajati leta 1901, bila je pisana v nemškem in angleškem jeziku, in je bila takrat ena prvih seizmoloških revij v svetu. V njo so pisali vodilni svetovni seizmologi Belarjevega časa. Namen mesečnika je bil širiti znanje o potresih in poročati o vseh novejših izsledkih. Revija je imela prilogo Neueste Erdbeben-Nachrichten, v kateri je Belar objavljal poročila o potresih zapisanih na ljubljanski potresni opazovalnici. Žal je zaradi urednikovih težkih gmotnih razmer revija leta 1910 prenehala izhajati. (Vidrih in Mihelič, 2010).

V. Ribarič, 1964. Zemlja se je stresla. Cankarjeva založba, Ljubljana.

Knjiga je izšla leta 1964 v spomin na potres v Skopju, ki se je zgodil 26. julija 1963, zahteval več kot tisoč žrtev in povzročil velikansko gmotno škodo. Je prva knjiga o seizmologiji napisana v slovenskem jeziku. Z njo je Vladimir (Vlado) Ribarič na poljuden način skušal seznaniti širok krog slovenskih bralcev s potresi in silami, ki se pojavljajo v Zemljini notranjosti ter pojasniti potresne pojave in vse tisto, kar se dogaja v zvezi z njimi.

V. Ribarič, 1982. Seizmičnost Slovenije, Katalog potresov (792–1981). Seizmološki zavod SR Slovenije, Ljubljana.

Prva izmed treh knjig dela Seizmičnost Slovenije vsebuje katalog potresov od leta 791 do 1981. V njem so podatki o makroseizmičnih in instrumentalnih parametrih potresov z izvorom na ozemlju Slovenije. Katalog vsebuje nad 2600 potresov, ki so enotno obdelani. Namenjeni so vzpostavitvi banke seizmoloških podatkov za Slovenijo, katere delo je olajšalo nadaljnje proučevanje seizmičnosti, seizmotektonike, potresnega zoniranja in določitev elementov naravne potresne nevarnosti.

V. Ribarič, 1984. Potresi. Cankarjeva založba, Ljubljana.

Knjiga Potresi je luč sveta ugledala leta 1984. Ribarič je v njej opisal dosežke seizmologije dvajsetletnega obdobja, 1964–1984, to je obdobja po izdaji prve knjige o seizmologiji Zemlja se je stresla. Predstavil je vrsto novih spoznanj o Zemlji kot o izvoru gigantskih potresnih sil, o raznolikosti teh naravnih pojavov, o možnostih in prvih uspehih napovedovanja potresov, predvsem pa o potresno odporni gradnji. Posebno pozornost je posvetil temu, kako zgraditi svoj dom, da bo ta varen pred potresnimi nihanji. Opravil je tudi temeljitejši pregled mer in navodil ter podal navodila kako se moramo obnašati pred potresom, med njim in po njem, da bi čim uspešneje ublažili posledice teh najhujših naravnih nesreč. Knjigo bogatijo risbe in zemljevidi, ki obenem pojasnijo nekatere zahtevnejše tekstovne prikaze.

Potresna ogroženost mesta Ljubljane, 1991. ZRMK (I. del) in Seizmološki zavod RS (II.del).

Gradbeni inštitut ZRMK in Seizmološki zavod RS sta elaborat o potresni ogroženosti Ljubljane izdala v dveh delih. V prvem delu je opisana metodologija za ocenjevanje potresne ranljivosti večjih skupin starejših zgradb, zgrajenih pred sprejetjem prvih jugoslovanskih predpisov o potresno odporni gradnji po skopskem potresu leta 1964. Uporabljena metodologija je upoštevala tako tehnično dokumentacijo zgradb kot eksperimentalno utemeljene podatke o potresni odpornosti. Najprej je bila preverjena na 17 tipičnih zgradbah, kasneje pa uporabljena na petih pregledanih zazidalnih območjih. V drugem delu je bilo na osnovi tedaj dostopnih geoloških in seizmoloških podatkov izdelana potresna ogroženost mesta, v nadaljevanju pa analizirana potresna ogroženost na petih prej omenjenih predelih mesta. V nalogi so bili predstavljeni tudi predvideni učinki potresa v nočnem času za pripravo in hiter odziv Mestnega štaba za civilno zaščito na potres.

V. Ribarič, 1994. Potresi v Sloveniji : ob stoti obletnici ljubljanskega potresa. Slovenska matica, Ljubljana.

Slovenija je dežela, kjer so potresi večkrat povzročili hude posledice. Avtor se v knjigi na poljuden način sprehodi skozi potresno zgodovino Slovenije. Močnejše znane potrese postavi v zgodovinsko obdobje, dogajanje in posledice potresa pa oriše s pomočjo najdenih dokumentov in virov o potresu. Vzporedno s potresno zgodovino Slovenije opiše tudi nova dognanja in razvoj seizmologije tega časa v svetu, s posebno pozornostjo dokumentira tudi slovensko seizmologijo od postavitve prve potresne opazovalnice 18. septembra 1897 v prostorih tedanje Višje cesarsko-kraljeve realke na Vegovi ulici v Ljubljani, pa vse do delovanja Seizmološkega zavoda, katerega direktor je bil avtor do upokojitve leta 1994.

R., Vidrih, (ur.), 2006. Mreža potresnih opazovalnic - Seismic Network of Slovenia, ARSO, Urad za seizmologijo in geologijo, Ljubljana.

Ob odprtju državne mreže potresnih opazovalnic smo na Uradu za seizmologijo in geologijo, Agencije Republike Slovenije za okolje, izdali knjigo Državna mreža potresnih opazovalnic - Seismic Network of Slovenia. Knjiga je napisana v slovenščini in angleščini in obsega 288 strani velikega formata. V uvodnem delu seznanja strokovno javnost z razlogi, zakaj je tovrstna mreža potresnih opazovalnic potrebna, z zgodovino potresnih opazovanj doma in po svetu, načinom izbora lokacij za novo mrežo, gradbenimi in električnimi deli, opremo in prenosom podatkov, opisom središča za obdelavo podatkov itd. V drugem delu knjige so opisi posameznih opazovalnic, od lege, dostopa, opreme, povezav do geološke zgradbe širše okolice vsake opazovalnice in geološkega profila v okolici vsake opazovalnice. (Vidrih, 2007)

R., Vidrih, 2008. Potresna dejavnost zgornjega Posočja – Seismic activity of the Upper Posočje Area, MOP, ARSO, Urad za seizmologijo in geologijo.

Dr. Renato Vidrih je ob 10-letnici potresa v zgornjem Posočju izdal knjigo z naslovom »Potresna dejavnost zgornjega Posočja« opisuje dogajanja v potresni preteklosti tega območja; geološke in seizmološke značilnosti, potresno nevarnost in ogroženost ter analizo dogodkov leta 1998 in 2004.. Monografija je dvojezična, zajema 509 strani in poleg bogatega besedila vsebuje številne posnetke poškodb narave in objektov in številne druge ilustracije. (Ribičič, 2008)

R. Vidrih in J. Mihelič, 2010. Albin Belar : pozabljen slovenski naravoslovec / Albin Belar – Forgotten Slovenian Natural Scientist, Založba Didakta, Radovljica.

Knjiga o dr. Albinu Belarju, pionirju slovenske seizmologije in varstva narave, avtorjev Renata Vidriha in Jožeta Miheliča, razkriva življenje in delo pomembnega naravoslovca, ki je bil dolga leta po krivici zapostavljen. V knjigi so objavljeni številni dokumenti iz Belarjevega časa, ki so z objavo za vedno iztrgani izgubi, ki jim je grozila. Avtorja sta gradivo zbirala več kot deset let. Številne osebne dokumente ter njegovo zasebno in strokovno korespondenco so jima posredovali Belarjevi sorodniki v ZDA in Sloveniji. V knjigi sta zgodovinsko in naravoslovno poglobljeno obdelani njegovo življenje in pionirsko delo na področju seizmologije in varstva narave. Knjiga je napisana v slovenskem in angleškem jeziku. (Gosar, 2010)

Publikacije Potresi v letu

D., Nečak, I., Cecić, Bilo je res grozljivo, bobnelo in grmelo je pod nami, Brežiški potres 1917, Brežiške študije 5, 2018. Znanstvena založba Filozofske fakultete Univerze v Ljubljani, Ljubljana, Brežice, 2018.

V monografiji se prepletajo trije vidiki brežiškega potresa. Eden je zgodovinski vidik, ki se nanaša na v potresu močno prizadeta naselja, od mesta Brežice z gradom do bližnjih krajev, ki so del današnje brežiške občine (npr. vasi Čatež ob Savi in Krška vas) in širšega področja. Drugi vidik je seizmološki, saj prinaša ponovno določitev moči tedanjega potresa in njegovega nadžarišča. Tretji vidik pa je prevod popisa škode, ki ga je po »velikem potresu« pripravila komisija za ocenitev potresne škode. In ta je pričevalec življenja naših prednikov, saj se za zabeleženo škodo skrivajo zgodbe posameznikov.

Agencija RS za okolje, Urad za seizmologijo, Ljubljana. http://www.arso.gov.si/potresi/poro%c4%8dila%20in%20publikacije/

Seizmološki zavod RS je v letih 1966 – 1973 letna poročila o potresih v Jugoslaviji in po svetu objavljal v Astronomskih efemeridah. Leta 1974 pa vse do 1986 so astronomske efemeride in letno poročilo o potresih izhajali kot priloga revije Proteus, leta 1987 priloga postane revija Naše nebo in Zemlja. Zaradi težav pri usklajevanju časovnega obdobja zajetega v letni publikaciji - astronomi so namreč objavljali lege nebesnih teles in nebesne dogodke za prihajajoče leto, medtem ko so seizmologi poročali o preteklih potresih - sta stroki prišli do dogovora, da astronomi svojo pot nadaljujejo z revijo Naše nebo (1993 – danes), medtem ko Seizmološki zavod RS zaorje samostojno pot z letopisom Potresi v letu (1991 – danes).

Namen publikacije je bil povzeti letno potresno dejavnost na Slovenskem in po svetu, obenem pa vse, ki so po potresu na prošnjo Seizmološkega zavoda posredovali podatke o učinkih potresa, seznaniti z izsledki raziskav.

Z leti sta se tako obseg kot vsebina publikacije širila. Danes opisu potresnih opazovalnic v tekočem letu sledi pregled potresov, ki so nastali na slovenskih tleh. Pod redni repertoar letopisa se uvrščajo tudi prispevki o delovanju državne mreže potresnih opazovalnic, poročilo o učinkovitosti pridobivanja podatkov iz državne mreže potresnih opazovalnic, seznam žariščnih mehanizmov močnejših potresov v Sloveniji, podrobnejši opis nekaterih močnejših potresov v tekočem letu in prispevek o najmočnejših potresih v svetu. Poleg naštetih prispevkov so v publikaciji opisane tudi razne raziskave, posodobitve in razvoj seizmologije na Slovenskem ter predstavljena mednarodna srečanja, katerih smo se slovenski seizmologi udeležili.

Do leta 2009 je publikacija izhajala v tiskani obliki, kasneje pa zaradi varčevanja le še v elektronski obliki. Vsi izvodi publikacije so dosegljivi na spletnem portalu ARSO Potresi na naslovu http://www.arso.gov.si/potresi/poro%c4%8dila%20in%20publikacije/

quasi esclusivamente da apparecchi sismici registratori, quindi le notizie sulla forma, durata, direzione che ha avuta la scossa per molte altre località situate esclusivamente in Italia: esse sono per maggiore comodità disposte in ordine alfabetico: fu per quest'ultime omesso l'istante del principio del movimento sismico perchè dato con troppa grossolana applicazione.

Bollettino della Società sismologica italiana. Società sismologica italiana, Roma, 1895-1948

Letopis Italijanskega seizmološkega društva je začel izhajati leta 1895, v letu velikega ljubljanskega potresa. Tako lahko v njem najdemo poročilo o potresu 14. aprila 1895, zabeleženem na potresnih opazovalnicah, ki so v tem času delovale na italijanskih tleh. Prvo leto izdaje je bilo v društvu 34 italijanskih seizmologov, kmalu zatem pa so se društvu pridružili tudi tuji strokovnjaki, med njimi Albin Belar.

V prvem delu letopisa najdemo prispevke članov društva, v drugem pa poročilo o zabeleženih potresih na tedanjih potresnih opazovalnicah skupaj z makroseizmičnimi podatki. Revija je izhajala od leta 1895 do 1948.

V naši knjižnici hranimo naslednje izdaje: I. (1895), II. (1896), III. (1897), V. (1899), VI (1900-1901), VIII. (1902-1903), IX. (1903-1904), X. (1904-1905), XI. (1906), XII. (1907), XVI (1912), XVII. (1913), XVIII. (1914). Vsi ti letniki so označeni z žigom in inventarno številko prve Avstro-Ogrske potresne opazovalnice, ki je delovala v Ljubljani, in je zanjo skrbel Albin Belar, začetnik seizmologije pri nas.

Annali di geofisica. INGV, Istituto Nazionale di Geofisica e Vulcanologia - ISSN: 2037-416X https://www.annalsofgeophysics.eu/index.php/ annals

Angleško Annals of Geophysics ali slovensko Geofizikalni letopis je mednarodna revija, ki je strokovno pregledana, brezplačna in spletno dostopna. Publikacija razširja prispevke o izvirnih raziskavah seizmologije, geodezije, vulkanologije, fizike in kemije zemlje, oceanografije in klimatologije, geomagnetizma in paleomagnetizma, geodinamike in tektonofizike, fizike in kemije atmosfere. Izhaja že od leta 1948 in sicer nekaj številk letno. V naši knjižnici hranimo letnike obdobij 1952–1972 ter 1993–2009. Bulletin of the Seismological Society of America (BSSA). Seismological Society of America, Berkeley, California, 1911 - . https://www.seismosoc.org/publications/bssa/

V svetovnem merilu je BSSA ena vodilnih revij s področja seizmologije. V njej so objavljene napredne raziskave seizmologije in sorodnih disciplin. Izhaja od leta 1911 dalje. V knjižnici hranimo celotno zbirko te revije.

Journal of Geophysical Research (JGR). American Geophysical Union. https://agupubs.onlinelibrary.wiley.com/journal/21562202

Ameriško združenje American Geophysical Union je začelo z izdajo tega mesečnika že leta 1896, le da je takrat izhajal pod imenom Terrestrial Magnetism and Atmospheric Electricity (1896–1948). Leta 1949 je spremenil svoje ime v Journal of Geophysical Research. V reviji so objavljene izvirne znanstvene raziskave o fizikalnih, kemijskih in bioloških procesih, ki prispevajo k razumevanju Zemlje, Sonca in sončnega sistema ter vseh njihovih okolij in komponent. Z leti se je število raziskav na posameznih področijh tako povečalo, da mesečnik ni zmogel zaobjeti vseh raziskav, zato so JGR postopoma od leta 1980 dalje organizirali v sedem disciplinskih sekcij, in sicer A: Space Physics (1980), B: Solid Earth (1980), C: Oceans (1980), D: Atmospheres (1984), E: Planets (1991), F: Earth Surface (2003), G: Biogeosciences (2005). Seizmologijo pokriva JGR: Solid Earth, ki objavlja izvirne raziskovalne članke s širokega področja geofizike trdne zemlje, petrologije, geokemije, mineralo-gije, tektonofizike, potresne nevarnosti in vulkanologije. V knjižnici so shranjeni letniki obdobja 1954–2010.

Tectonophysics

Elsevier, Amsterdam ; London ; New York, 1964 - . https://www.sciencedirect.com/journal/tectonophysics/issues

Revija se osredotoča na izvirne in pregledne raziskave s področja kinematike, strukture, sestave in dinamike trdne zemlje na vseh ravneh. Izdaja jo založba Elsevier. Izhaja od leta 1964. V knjižnici hranimo letnike obdobja 1967–2012.

Zaključek

Knjižnica hrani knjige, revije, elaborate in poročila, ki smo jih objavili slovenski seizmologi in so narodni zaklad seizmologije na Slovenskem. Na knjižnih policah lahko najdemo tudi zbirke mednarodnih, v seizmo-

logiji cenjenih znanstvenih revij in knjige priznanih avtorjev, v katerih so zbrana dognanja na področju seizmologije. Četudi je gradivo staro, so odkritja brezčasna in temeljna za nadaljnje raziskave. Knjižno gradivo služi raziskovalnim in študijskim namenom, tako seizmologom na ARSO, kar je nujno, saj se v Sloveniji s to znanostjo ne moremo srečevati na drugačen način kot preko literature, kot tudi študentom in raziskovalcem v Sloveniji in drugje.

ARSO se lahko upravičeno pohvali, da hrani tako edinstveno in obsežno specialno in hkrati študijsko-raziskovalno seizmološko knjižnico na slovenskih tleh.

Literatura

- A., Gosar, 2011. Albin Belar Pozabljeni slovenski naravoslovec / Albin Belar Forgotten Slovenian Natural Scientist. Ujma, letnik 2011, št. 35, 331–332, Ljubljana.
- M., Ribičič, 2008. Knjiga Potresna dejavnost zgornjega Posočja / The book Seismic Activity of the Upper Posočje Area. Ujma, letnik 2008, št. 22, 344–345, Ljubljana.
- R., Vidrih, 2007. Knjiga Državna mreža potresnih opazovalnic / Publication »Seismic Network of Slovenia«. Ujma, letnik 2007, št. 21, 347–348, Ljubljana.
- R. Vidrih in J. Mihelič, 2010. Albin Belar : pozabljen slovenski naravoslovec, Založba Didakta, Radovljica.