

Potresi v letu 2018 Earthquakes in 2018

Izdajatelj

Ministrstvo za okolje in prostor Agencija RS za okolje Vojkova 1b, Ljubljana Spletni naslov: www.arso.gov.si e-naslov: gp.arso@gov.si

Urednik

dr. Andrej Gosar

Grafična priprava

Peter Sinčič

Uredniški svet

dr. Andrej Gosar Ina Cecić dr. Martina Čarman Matjaž Godec mag. Tamara Jesenko Peter Sinčič dr. Barbara Šket Motnikar mag. Izidor Tasič Polona Zupančič mag. Mladen Živčić

Naslovnica:

Na velikonočno nedeljo 12. aprila 1998 so se v Posočju ob 12.55 močno stresla tla. Potres z magnitudo 5,6 in intenziteto med sedmo in osmo stopnjo po evropski potresni lestvici je imel žarišče med dolino Lepene in Krnskim pogorjem v globini osem kilometrov.

Cover Page:

On Easter Sunday, April 12, 1998, at 12:55 the ground was shaking in the Soča Valley. An earthquake of magnitude 5.6 and intensity between the seventh and eighth levels according to the EMS had a focal point between the Lepena valley and the Krn Mountains at a depth of eight kilometers.

Mednarodna standardna serijska številka: ISSN 1318 - 4792

Kazalo / Contents

Peter Sinčič, Izidor Tasič, Mladen Živčić Potresne opazovalnice v Sloveniji v letu 2018
Seismic Network in Slovenia in 20185
Anita Jerše Sharma, Tamara Jesenko, Barbara Šket Motnikar, Mladen Živčić Potresi v Sloveniji leta 2018 Earthquakes in Slovenia in 201813
Izidor Tasič, Marko Mali, Luka Pančur, Peter Sinčič, Igor Pfundner, Bojan Uran, Jože Prosen Delovanje državne mreže potresnih opazovalnic v letu 2018 Seismic Stations Operation in Slovenia in 201832
Tamara Jesenko Najmočnejši potresi po svetu leta 2018 The World's Largest Earthquakes in 201841
Milka Ložar Stopar, Mladen Živčić Žariščni mehanizmi močnejših potresov v Sloveniji v letih 2017 in 2018 Fault Plane Solutions Of Earthquakes in Slovenia in 2017 and 2018
Dogodki v letu 2018 2018 Events59

Potresne opazovalnice v Sloveniji v letu 2018 Seismic Network in Slovenia in 2018

Povzetek

Abstract

Leta 2018 je na območju Slovenije delovalo 29 digitalnih potresnih opazovalnic z neprekinjenim prenosom podatkov v središče za obdelavo v Ljubljani, ena digitalna opazovalnica z neprekinjenim beleženjem podatkov na lokalni pomnilniški medij ter 11 digitalnih opazovalnic, opremljenih z akcelerografi, za opazovanje seizmičnosti na urbanih območjih. Slednje beležijo in prenašajo v središče za obdelavo v Ljubljani samo zapise seizmičnih dogodkov, pri katerih pospeški presežejo prag proženja. Različne posodobitve opreme smo izvedli na 9 opazovalnicah. In the year 2018 there were 29 digital seismic stations incorporated in Seismic Network of the Republic of Slovenia (SNRS) with real-time continuous data transmission to the data centre in Ljubljana, one digital station with continuous recording of data on local media, and 11 stations equipped with accelerographs to monitor seismicity in urban areas. The latter record and transmit only triggered events to the data centre in Ljubljana. Different update of equipment were implemented at 9 seismic stations.

Digitalne potresne opazovalnice

Leta 2018 je v Sloveniji stalno delovalo 29 digitalnih potresnih opazovalnic (preglednica 1, slika 1). Na opazovalnici v Juršču (JURE), ki je bila zaradi povečane seizmične aktivnosti na Notranjskem postavljena začasno, so se podatki shranjevali na lokalni pomnilniški medij. Z ostalih opazovalnic se podatki samodejno neprekinjeno prenašajo v središče za obdelavo podatkov (SOP) na Vojkovo 1b v Ljubljani in rezervno središče na observatoriju na Golovcu v Ljubljani.

Tudi v tem letu smo izvedli nekaj večjih posodobitev seizmološke opreme. Na opazovalnicah CEY in ZAVS smo zamenjali seizmometra in akcelerometra, na VOJS smo zamenjali seizmometer (slika 2), na DOBS smo dodali akcelerometer, na CESS pa novo zajemalno enoto. Na opazovalnicah GOLS, LEGS, PDKS in ILBA smo posodobili sistemsko programsko opremo (firmware).

V okviru servisne dejavnosti smo na opazovalnicah BOJS, CESS, LISS, VNDS in VOJS zamenjali stare akumulatorje z novimi.

Na opazovalnici SKDS pa smo zaradi vse pogostejših okvar na telefonskih linijah prešli na brezžični LTE prenos podatkov.

Zaradi močnejšega potresa pri Knežaku (Jerše Sharma in ostali, 2020) smo v Jurščah (JURE) in Mašunu (MASP) namestili prenosna instrumenta za beleženje popotresne aktivnosti na tem območju (slika 2).

Slika 1: Potresne opazovalnice Urada za seizmologijo leta 2018 *Figure 1:* Seismic network of Seismology Office in 2018.

Preglednica 2: Digitalne potresne opazovalnice v Sloveniji v letu 2018

* - opazovalnica je delovala že prejšnje leto

** - delovanje opazovalnice se nadaljuje v prihodnjem letu

Table 2: Digital seismic stations in Slovenia in 2018.

- * station has been in function in previous year
- ** station continues to operate in 2019

opaz.	ozn.	zem. šir.	zem. dol.	n. viš.	geološka	seizmometer/	zajemalna naprava/ser. št.	čas del operatio	lovanja nal time
station	code	latitude ^O N	longit. ^O E	elev. [m]	local geology	seismometer/sn	acquisition unit/sn	od/from	do/to
Bojanci 1986	BOJS	45,5043	15,2518	252	kredni apnenec limestone	STS-2/10417 EpiSensor/1723	Q330HR/6087	\$	\$\$
Brezje pri		45 0405	15 4200	200	glina		CMG-DM24S3/A2533	☆	28. 09. 2018
1990	RDZF	45,9405	15,4590	200	clay	CIVIG-401/14D09	CMG-DM24S6/A2526	28. 09. 2018	<u>ት</u> ት
Cerknica	CEV					FBA 23/32168 CMG-3ESP/T36903	O330HR/6104	☆	27. 07. 2018
(Goričice) 1975		45,7381	14,4221	579	apnenec limestone	Fortis/TF465 Trillium/2967	00001100104	27. 07. 2018	**
	CEY1					CMG-40T/T4B12	Q730/2000102	☆	\$\$
Cesta	CESS	15 0733	15 /632	372	dolomit		HRD24-2432/172	${\Rightarrow}$	22. 11. 2018
1996		40,9700	15,4052	572	dolomite	CINO-401/14D10	EDR-209/6787	22. 11. 2018	\$\$
Čadrg 2003	CADS	46,228	13,7368	700	kredni apnenci limestone	CMG-3ESP/T36897 CMG-5T/T5JD6	Q330HR/5797	☆	**
Črešnjevec 2002	CRES	45,826	15,4569	430	dolomit dolomite	STS-2/90733 EpiSensor/782	Q330HR/5797	☆	**
Črni Vrh 2005	CRNS	46,0807	14,2614	712	sp.triasni sivi dolomit dolomite	CMG-3ESP/T36081 CMG-5T/T5JD4	Q330HR/6105	\$	\$\$
					enodnietriaeni	CMG-3ESP/T35605		☆	ኇኇ
Dobrina 1996	DOBS	46,1494	15,4694	427	laporji	Fortis/TF466	Q330HR/2341	06. 09. 2018	05. 12. 2018
					mari	CMG-5T/T5HL8		05. 12. 2018	ል <mark>ል</mark>
Gorenja Brezovica 2008	GBAS	45,9348	14,4434	538	zgornjetriasni dolomit dolomite	CMG-3ESP/T35448 CMG-5T/T5HL9	Q330HR/6100	☆	☆☆
Gornja Briga 2007	GBRS	45,5311	14,8101	610	zgornjetriasni dolomit dolomite	CMG-3ESP/T35893 CMG-5TC/T5KU6	Q330HR/6315	\$	\$\$
Gornji Cirnik 2003	GCIS	45,8672	15,6275	390	dolomit dolomite	CMG-3ESP/T34749 CMG-5TC/T5KU5	Q330HR/6311	Δ	**
Goliše 2002	GOLS	46,0107	15,6245	559	masiven dolomit massive dolomite	CMG-40TBH/T4B26 FBA23/32206	Centaur/101	\$	44
Gorjuše 2004	GORS	46,3174	13,9999	1048	ploščasti apnenec z roženci platty limestone with chert	CMG-3T/T36604 EpiSensor/785	Q330HR/5657	☆	古古
Grobnik	GROS	46 4610	15 5017	030	tonalit	CMG-3ESP/T39558	O330HR/6312	\$	\$\$
2002	51.00		10,0017	000	tonalite	FBA23/32168	Q000111/0012	30. 08. 2018	\$\$
Javornik 2003	JAVS	45,8934	14,0643	1100	zgornje triasni dolomit dolomite	CMG-3T/T37725 CMG-5TC/T5HL6	Q330HR/5881	☆	**

opaz.	ozn.	zem. šir.	zem. dol.	n. viš.	geološka	seizmometer/	zajemalna naprava/ser. št.	čas de operatio	lovanja nal time
station	code	latitude ^O N	longit. ^O E	elev. [m]	local geology	seismometer/sn	acquisition unit/sn	od/from	do/to
Juršče 2018	JURE	45.6646	14.2939	705	apnenec limestone	LE-3D 5S/AB-0726	PR6-24/4975	06. 12. 2018	44
Knežji dol 2003	KNDS	45,5279	14,3806	1024	zgornje jurski apnenec limestone	STS-2/120925 CMG-5TC/5HL5	Q330HR/5798	\$	**
Kog 2004	KOGS	46,4481	16,2503	245	glina clay	CMG-3T/T37085 EpiSensor/784	Q330HR/5653	\$	\$\$
Legarje 2002	LEGS	45,9488	15,3177	390	sivi dolomit dolomite	CMG-40TB/T4B29 FBA-23/32168	Centaur/105	\$	44
Lisca 2002	LISS	46,0673	15,2906	948	masiven dolomit massive dolomite	CMG-40T/T4B06	EDR-209/6786	\$	44
Ljubljana 1958	LJU	46,0438	14,5278	396	karbonski peščenjaki sandstone	STS-2/40316 EpiSensor/783	Q330HR/5656	\$	**
					ploščasti	CMG-3T/T37540		\$	19. 09. 2018
Možjanca 2005	MOZS	46,2941	14,4433	660	apnenec platty	CMG-3T/T37529	Q330HR/5654	19. 09. 2018	☆☆
					limestone	Fortis/TF089		*	**
Pernice 2002	PERS	46,636	15,1167	795	blestnik schist	CMG-3ESP/T35616 CMG-5T/T5JD5	Q330HR/6102	\$	44
Podkum 2002	PDKS	46,0612	14,9977	679	dolomit dolomite	CMG-40TBH/T4B28 FBA-23/003349	Centaur/198	\$	44
Robič 2002	ROBS	46,2445	13,5094	257	apnenec limestone	CMG-3ESP/T34746 Fortis/TF090	Q330HR/5880	\$	44
Skadanščina 2006	SKDS	45,5464	14,0143	552	ploščasti apnenci platy limestone	STS-2/T10416 EpiSensor/786	Q330HR/5658	\$	አል
Višnje 2003	VISS	45,8033	14,8393	399	siv apnenec limestone	CMG-3ESP/T35617 CMG 5T/T5HL7	Q330HR/5879	☆	44
						CMG 5T/T5V48		\$	**
Vojsko	vojs	46,0322	13,8877	1072	dolomit	CMG-3ESP/T3S67	Q330HR/6103	র্ম	14. 11. 2018
2004					dolomite	Trillium/2973		14. 11. 2018	ልል
Vrb pri					kremenov	CMG 40T/T4B22		\$	11. 9. 2018
Dolskem	VNDS	46,1016	14,7014	531	peščenjak	CMG-3ESP/T34238	Q330HR/5880	11. 9. 2018	☆☆
2006			-		sandstone	EpiSensor/1722		\$	፞፞፝ፚ፞፞፞ፚ
						CMG 40T/T4B11		\$	27.07.2018
Zavodnje	741 0	16 1242	15 0246	740	granodiorit	CMG-3ESP/T39926	022010/6240	22. 08. 2018	**
2005	LALO	40,4342	15,0240	149	granodiorite	CMG 5TC/T5HL8		22. 08. 2018	18. 09. 2018
						Fortis/TF467		18. 09. 2018	**

Opazovalnice za beleženje močnega gibanja tal

Leta 2018 smo na dveh potresnih opazovalnicah državne mreže (GROS in ZAVS) namestili poleg seizmometra še akcelerometer, tako da je bilo konec leta 2018 že 25 opazovalnic opremljenih z obema instrumentoma (preglednica 1). Za merjenje pospeškov tal v urbanih območjih imamo 10 lokacij opremljenih s pospeškometri/akcelerografi (BOGE, BOVC, DOLA, DRZN, GOTE, ILBA, KOBR, NEK0, FAGG in VOGR). Prenos podatkov z opazovalnice ILBA poteka neprekinjeno preko komunikacijskega omrežja državnih organov, z ostalih nameščenih opazovalnic pa preko klicne povezave (linija ali GSM).

Slika 2: Namestitev novega seizmometra Trillium v stiroporno ohišje s stiropornimi kroglicami za tloplotno izolacijo na potresni opazovalnici VOJS na Vojskem (foto: M. Mali).

Figure 2: Installation of a new Trillium seismometer in a styrofoam housing with styrofoam beads for thermal insulation at the VOJS Earthquake Station in Vojsko (photo: M. Mali)

Preglednica 2: Podatki o opazovalnicah za beleženje močnega gibanja tal, ki so v Sloveniji delovale v letu 2018

opaz. station	ozn. code	zem. šir. latitude	zem. dol. Iongitude	nad. viš. elev.	senzor sensor	zajemalna naprava acquisition	ser. številka serial	merilni obseg full scale	čas delovanja operational time
		°N	°E	[m]	, ype	unit	number	range	operational time
Bogenšperk	BOGE	46,0237	14,8572	422	FBA-23	Etna	1245	1 g	vse leto
Bovec	BOVC	46,3382	13,5543	455	FBA-23	Etna	811	1 g	vse leto
Dolsko	DOLA	46,0938	14,6781	265	FBA-23	Etna	810	1 g	vse leto
Drežnica	DRZN	46,2586	13,6126	544	EpiSensor	Etna	2134	2 g	vse leto
Gotenica	GOTE	45,6095	14,7464	670	FBA-23	Etna	1246	1 g	vse leto
Ilirska Bistrica	ILBA	45,5638	14,2446	404	FBA-23	EDR 209	6142	0,25 g	vse leto
Kobarid	KOBR	46,2474	13,5786	234	EpiSensor	Etna	2133	2 g	vse leto
Krško (NEK)	NEK0	45,9391	15,5185	156	FBA-23	Etna	1334	2 g	vse leto
Ljubljana - FGG	FAGG	46,0459	14,4944	295	FBA-23	Etna	6597	2 g	vse leto
Mašun	MASP	45.6292	14.3663	1024	EpiSensor	Etna	6351	2 g	od 06. 12. 2018
Vogršček	VOGR	45,9057	13,7259	106	EpiSensor	K2	2228	2 g	vse leto

Table 2: Free-standing strong motion seismic stations operating in Slovenia in 2018 (vse leto = entire year)

Slednji instrumenti delujejo v prožilnem načinu in beležijo le dogodke, ki imajo pospeške tal večje od nastavljenega praga proženja. Podatki o času delovanja posameznih opazovalnic v urbanih območjih, njihovih oznakah, lokacijah in serijskih številkah so navedeni v preglednici 2.

Število zabeleženih potresnih dogodkov

Slovenske potresne opazovalnice so leta 2018 zabeležile 3151 potresnih dogodkov, od tega 2103 lokalnih potresov, 260 bližnjih in 786 oddaljenih (ARSO, 2018). Seizmografi so zapisali tudi 1150 umetnih potresov (preglednica 3, sliki 4 in 5). Potresni dogodek je namreč lahko naravnega ali umetnega izvora.

Preglednica 3: Potresi v letu 2018, zabeleženi na slovenskih potresnih opazovalnicah. **Table 3:** Earthquakes in 2018 recorded at Slovenian seismic network.

mesec	oddaljeni potresi	bližnji potresi	lokalni potresi	umetni potresi	dogodki
month	distant earthquakes	regional earthquakes	local earthquakes	artificial	events
januar January	65	12	229	157	463
februar February	34	23	157	45	259
marec March	48	28	140	79	295
april April	76	36	213	60	385
maj May	80	24	198	79	381
junij June	63	15	168	80	326
julij July	72	23	220	104	419
avgust August	86	22	167	91	366
september September	84	21	146	128	379
oktober October	61	16	147	180	404
november November	52	25	143	90	310
december December	65	17	175	57	314
skupaj Total	786	262	2103	1150	4301
legenda	Legenda: Oddaljeni potro Regionalni pot Lokalni potresi	esi / Distant eart resi / Regional e i / Local earthqu	hquakes earthquakes akes	Δ > 10° (> 1 1,5° < Δ < 10° Δ ≤ 1,5° (≤ 1	.100 km) (< 1.100 km) 160 km)
Legend	Δ - oddaljenos 111,1 km v sm Δ - distance fro tion, and 77 km	t od Ljubljane v eri sever - jug in om Ljubljana, in n in E-W directio	kotnih stopinjah: 77km v smeri v degrees: 1° is aj on	1° predstavlja p zhod- zahod oprox. 111,1 km	ribližno in N-S direc-

Slika 3: Namestitev prenosnih instrumentov na začasno lokacijo v Mašunu (foto: L. Pančur). *Figure 3:* Installation of portable instruments at a temporary location in Mašun (photo: L. Pančur).

Slika 4: Število potresnih dogodkov po mesecih v letu 2018 *Figure 4:* Monthly distribution of seismic events in 2018.

Slika 5: Število naravnih (oddaljenih, bližnjih in lokalnih posebej) in umetnih potresov po mesecih v letu 2018

Figure 5: Monthly distribution of earthquakes (distant, regional, local) and artificial events in 2018.

Viri in literatura

- Agencija Republike Slovenije za Okolje, 2018. Baza podatkov za potrese na ozemlju Slovenije leta 2017. Arhiv ARSO, Ljubljana.
- Vidrih, R., Sinčič, P., Tasič, I., Gosar, A., Godec, M., Živčić, M. 2006. Državna mreža potresnih opazovalnic. Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana, 287 str.

Anita Jerše Sharma, Tamara Jesenko, Barbara Šket Motnikar, Mladen Živčić

Potresi v Sloveniji leta 2018 Earthquakes in Slovenia in 2018

Povzetek

V letu 2018 je državna mreža potresnih opazovalnic (v nadaljnjem besedilu: DPMO) je zabeležila 2103 potrese v Sloveniji ali bližnji okolici. Prebivalci so čutili vsaj 119 lokalnih potresov, 26 od njih je imelo lokalno magnitudo večjo ali enako 2,0. Najmočnejši potres leta 2018 z lokalno magnitudo 3,5 se je zgodil 17. januarja ob 10.22 po univerzalnem koordiniranem času (Coordinated Universal Time) (v nadaljnjem besedilu: UTC) oziroma ob 11.22 po srednjeevropskem času (v nadaljnjem besedilu: SEČ) z nadžariščem pri Bovcu. Največja intenziteta potresa je bila V po evropski potresni lestvici (European Macroseismic Scale; /Grünthal, 1998/) (v nadaljnjem besedilu: EMS-98). Prebivalci Slovenije so čutili tudi pet potresov z žariščem pri Huminu v severni Italiji z največjo intenziteto v Sloveniji IV po EMS-98. Posamezniki so čutili tudi dva potresa iz osrednje Italije, ki pa v Sloveniji nista presegla intenzitete III po EMS-98.

Abstract

In 2018 the Seismic Network of the Republic of Slovenia recorded 2103 local earthquakes, at least 119 of which were felt by the people. There were 26 earthquakes with a local magnitude equal to or higher than 2.0. The strongest earthquake in Slovenia in 2018, with a local magnitude of 3.5, was observed on 17 January at 10:22 UTC (11:22 Central European Time (CET)) near Bovec. Its maximum intensity was V EMS-98. Inhabitants of Slovenia also felt five regional earthquakes with epicentres near Humin in Northern Italy. Their maximum intensity in Slovenia was IV EMS-98. A few people also felt two earthquakes in Central Italy. Their maximum intensity in Slovenia was III EMS-98.

Uvod

V DPMO je bilo leta 2018 26 digitalnih opazovalnic z neprekinjenim prenosom podatkov v podatkovno središče na Agenciji za okolje (ARSO) in rezervno podatkovno središče na observatoriju na Golovcu, oboje v Ljubljani (Vidrih in drugi, 2006). Mrežo dopolnjujeta še dve začasni opazovalnici z enako opremo in neprekinjenim prenosom podatkov (opazovalnica na Cesti pri Krškem – CESS) in opazovalnica v meteorološki postaji na Lisci – LISS). Poleg tega so se v stvarnem času zbirali tudi podatki nekaterih tujih potresnih opazovalnic v okviru sodelovanja Central and East European Earthquake Research Network (CE3RN, 2018). Predvsem tisti z opazovalnic sosednjih držav (Avstrija, Hrvaška, Italija, Madžarska) omogočajo natančnejši izračun potresnih parametrov. Še posebej to velja za potrese, katerih nadžarišča so blizu slovenske državne meje.

Potresna dejavnost v Sloveniji leta 2018

Potresne opazovalnice državne mreže so leta 2018 zabeležile 2103 lokalne potrese z žariščem v Sloveniji ali njeni bližnji okolici. Kot oddaljene potrese obravnavamo tiste, katerih žarišče je oddaljeno več kot 11 stopinj (nekaj več kot 1200 km) od Ljubljane (1° ≈ 111 km). Za lokalne

Slika 1: Nadžarišča potresov leta 2018, ki smo jim določili žariščni čas, koordinati nadžarišča in globino žarišča. Barva simbola ponazarja žariščno globino, njegova velikost pa vrednost lokalne magnitude M_{LV} . Slika je bila narejena s programom GMT (Wessel in Smith, 1991, 1998). **Figure 1:** Distribution of earthquake epicentres in 2018, with calculated hypocentral time, epicentral coordinates and focal depth; the coloured symbols of varying sizes denote focal depth and local magnitude M_{LV} . Magnituda = magnitude; Globina = depth. The figure was made using GMT software (Wessel and Smith, 1991, 1998)

potrese štejemo tiste, ki so nastali v Sloveniji ali njeni bližnji okolici (do 50 km od najbližjega slovenskega obmejnega kraja). Preostale potrese imenujemo bližnji oziroma regionalni potresi. Seizmografi so zapisali tudi številna (1150) umetno povzročena tresenja tal zaradi razstreljevanja ali rudarske dejavnosti.

Za 1695 lokalnih potresov smo zbrali dovolj podatkov, torej zapise z vsaj treh opazovalnic, da smo lahko izračunali lokacijo žarišča. Za 1693 izmed njih, ki so prikazani na sliki 1, smo lahko določili tudi magnitudo. Po podatkih za obdobje 1997–2016, potem ko iz kataloga odstranimo pred- in popotrese, se v Sloveniji vsako leto v povprečju zgodi 24 potresov z lokalno magnitudo večjo ali enako 2,0 in trije potresi z lokalno magnitudo večjo ali enako 3,0 (ARSO, 2018). V letu 2018 je bila potresna dejavnost v Sloveniji povprečna. Trideset potresov je imelo lokalno magnitudo večjo ali enako 2,0, od tega so bili trije z magnitudo 3,0 ali večjo od te vrednosti. Histogram na sliki 2 kaže porazdelitev lokalne magnitude (M_{LV}); 97 odstotkov vseh potresov je imelo lokalno magnitudo manjšo od 1,7.

Slika 2: Porazdelitev lokalne magnitude (M_{LV}) potresov v Sloveniji leta 2018 **Figure 2:** Distribution of earthquakes in Slovenia in 2018 with respect to M_{LV} magnitude

Slika 3: Porazdelitev globine žarišča potresov v Sloveniji leta 2018 (v kilometrih) *Figure 3:* Distribution of earthquakes in Slovenia in 2018 with respect to focal depth (in kilometres)

Porazdelitev globine žarišč potresov (slika 3) kaže, da so imeli leta 2018 vsi potresi na območju Slovenije in bližnje okolice (1695) žarišča do globine 27 km. Osemindvajset odstotkov potresov je imelo žariščno globino enako ali manjšo od 6 km, 64 % potresov se je zgodilo na globini med 6,1 in 15 km, 7 % potresov je imelo žarišče v globini med 15,1 in 21 km, 6 potresom (0,3 %) pa smo določili žariščno globino, ki je večja od 21 km.

Najmočnejši potres leta 2018 v Sloveniji oziroma njeni bližnji okolici se je zgodil 17. januarja ob 10.22 po UTC (11.22 po SEČ) v bližini Bovca. Imel je lokalno magnitudo 3,5 in največjo intenziteto

V po EMS-98. Potres je ponekod povzročil manjše razpoke v ometu, v višjih nadstropjih pa so se prevrnili ali premaknili manjši nestabilni predmeti. Spremljal ga je doneči zvok, ki je prestrašil posameznike, da so zbežali na prosto.

V preglednici 1 so osnovni podatki za 80 lokalnih potresov z izračunano lokalno magnitudo, večjo ali enako 1,5, od katerih so jih prebivalci Slovenije čutili 54. Poleg teh je navedenih še 64 šibkejših potresov, ki so jih prebivalci Slovenije čutili in smo jim lahko izračunali lokacijo nadžarišča. Prebivalci Slovenije so čutili še en zelo šibek potresni sunek, ki pa ga je zaznala le ena opazovalnica in mu zato nismo mogli določiti njegovih osnovnih parametrov (žariščni čas, koordinati nadžarišča itn.). Za vsak potres so navedeni datum (leto, mesec, dan), žariščni čas po UTC (ura, minuta, sekunda), koordinati nadžarišča (zemljepisna širina °N, zemljepisna dolžina °E), globina žarišča (km), lokalna magnituda (M_{LV}) in največja intenziteta (I_{max}) po EMS-98, ki jo je potres dosegel v Sloveniji. V stolpcu Potresno območje je za večino nadžarišč v Sloveniji napisano ime naselja, ki je najbližje nadžarišču in je navedeno v seznamu naselij Geodetske uprave RS (RGU, 1995), za preostala (nadžarišče je več kot 5 km oddaljeno od najbližjega naselja iz omenjenega seznama ali pa je zunaj slovenskih meja) smo toponim poiskali s pomočjo storitev Google Zemljevidi (Google Maps, 2018). Če podatki niso zadoščali za nedvoumno določitev intenzitete, smo potresu pripisali razpon mogočih vrednosti (npr. IV–V). Kadar potresu ni bilo mogoče določiti niti razpona mogočih vrednosti smo temu pripisali oznako »čutili«, ali oznako »zvok«, če so opazovalci poročali le o zvočnih učinkih brez tresenja.

Za določitev osnovnih parametrov potresov, navedenih v preglednici 1, smo uporabili analize potresov, zapisanih na potresnih opazovalnicah državne mreže v Sloveniji, dopolnilnih opazovalnicah za močnejše tresljaje in opazovalnic sosednjih držav ter biltenov iz Avstrije (ZAMG, 2017–2018) in Italije (OGS, 2018). Žariščni čas (čas nastanka potresa), koordinati nadžarišča in žariščno globino smo določili iz časa prihodov vzdolžnega (P) in prečnega (S) valovanja na potresno opazovalnico. Potrese smo locirali s programom HYPOCENTER (Lienert in drugi, 1988; Lienert, 1994). Uporabili smo povprečni hitrostni model za ozemlje Slovenije, določen iz tridimenzionalnega modela za prostorsko valovanje (Michelini in drugi, 1998) in modela za površinsko valovanje (Živčić in drugi, 2000). Potresom, ki smo jim lahko določili le koordinati nadžarišča, smo za žariščno globino privzeli sedem kilometrov (Poljak in drugi, 2000). Lokalno magnitudo M_{LV} potresov smo določili iz največje hitrosti navpične komponente nihanja tal na slovenskih opazovalnicah in oddaljenosti nadžarišča do potresne opazovalnice. V preglednici 1 je navedena povprečna vrednost M_{LV} za opazovalnice v Sloveniji. Največja intenziteta (I_{mav}), ki jo je potres dosegel na ozemlju Slovenije, je ocenjena po EMS-98.

V preglednici 2 so navedeni bližnji (regionalni) potresi, ki so jih čutili tudi v Sloveniji. Ljudje so na ozemlju Slovenije čutili kar pet potresov z žariščem pri Huminu v Furlaniji in so dosegli najvišjo intenziteto stopnje IV po EMS-98 v Sloveniji. Prav tako so prebivalci Slovenije čutili še dva potresa z žariščem v srednji Italiji, ki pa nista presegla intenzitete III po EMS-98 v Sloveniji.

Podatki o nekaterih močnejših potresih, ki so jih čutili prebivalci Slovenije

V letu 2018 v Sloveniji ni bilo potresov, ki bi povzročili gmotno škodo, le posamezne razpoke v ometu. En potres je imel največjo intenziteto V po EMS-98 in pet jih je imelo intenziteto IV–V po EMS-98. Prebivalci v Sloveniji so čutili skupno vsaj 126 potresov, 119 lokalnih in sedem regionalnih. Nadžarišča potresov so prikazana na sliki 4. Velikost kroga označuje lokalno magnitudo, barva pa največjo doseženo intenziteto potresa v Sloveniji. Preglednica 1: Seznam potresov leta 2018, ki so imeli lokalno magnitudo večjo ali enako 1,5 in smo jim lahko izračunali žariščni čas, koordinati nadžarišča (epicentra) ter globino žarišča. Pri potresih, ki so jih ljudje čutili, je navedena še največja intenziteta. V preglednici je tudi 64 potresov **Table 1:** List of earthquakes with $M_{LV} \ge 1.5$ in 2018, for which the hypocentral time, coordinates of the epicentre and the focal depth were calcus sicer manjšo lokalno magnitudo, vendar so jih prebivalci Slovenije čutili in smo jim tudi lahko določili osnovne parametre.

lated; the maximum intensity of the felt earthquakes is also provided. Information is included on 64 earthquakes of a lower magnitude, felt by the inhabitants of Slovenia, for which we also calculated the hypocentral time, coordinates of the epicentre and the focal depth

	potresno opmocje		epicentral area	Ratje	Pugled pri Starem Logu	Kal - Koritnica	Kal - Koritnica	Kal - Koritnica	Ilirska Bistrica	Vrbovo	Ilirska Bistrica	Vrbovo	Jasen	Ilirska Bistrica	Podkraj	Čezsoča	Klana, Hrvaška	Vrškovac, Hrvaška	Malunje, Hrvaška
l max	EMS 98	l max	EMS 98	2		>	čutili	čutili					čutili	čutili	≥	čutili		۰ <i>۲</i>	
2	N N	2	∆ ∎	0,9	1,7	3,5	1,0	1,6	1,7	1,5	1,7	1,7	1,6	1,7	1,6	1,1	1,6	2,4	2,5
RMS	s	RMS	s	0,3	0,4	0,6	0,2	0,5	0,4	0,4	0,3	0,0	0,3	0,3	0,5	0,3	0,4	0,6	0,5
	nst		USU	16	34	80	17	42	26	21	11	ю	21	22	31	16	20	68	62
Ч	к к	q	km	~	-	9	5	œ	1	12	11	6	7	12	7	7	13	11	10
z. dolž.	ĥ	lon	ĥ	14,87	14,96	13,58	13,57	13,59	14,28	14,29	14,28	14,30	14,28	14,28	14,96	13,58	14,39	15,42	15,61
z. šir.	N.	lat	N.	45,78	45,69	46,33	46,32	46,32	45,57	45,57	45,58	45,57	45,57	45,57	46,52	46,32	45,44	45,64	45,68
	v		S	30,9	6,3	20,4	15,3	53,9	50,5	11,4	49,4	50,4	19,4	45,8	36,9	53,6	27,2	16,6	58,2
čas (UTC)	٤	time (UTC)	min	54	30	22	22	22	50	51	52	52	56	58	12	11	99	6	თ
	٩		٩	20	12	10	12	14	2	4	5	5	5	5	21	8	19	0	14
	dan		day	11	16	17	17	17	18	18	18	18	18	18	19	26	27	29	7
datum	mesec	date	month	~	~	-	-	~	-	-	Ļ	~	~	~	-	Ļ	1	1	2
	leto		year	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018

			epicentral area	Donja Reka, Hrvaška	Arčelca	Klana, Hrvaška	Dobrava	Čezsoča	Stopnik	Sv. Anton na Pohorju	Hrast pri Vinici	Torovo	Bulići, Hrvaška	Vodice	Orehovec	Loke pri Zagorju	Loke pri Zagorju	Slovenska vas	Vrzdenec	Vodice	Donja Reka, Hrvaška	Setnik	Dobrovo	Čezsoča	Senuše
l max	EMS 98	l max	EMS 98				>I−II	2	>I−II	≡	>I−II	<u>∧-∧</u>	∗∕۱	≡	N-V	N-V	>I−II			≡		\sim	\geq		> -
Z	[∧]	2	M	1,7	1,5	2,2	2,1	1,9	1,2	1,2	1,4	1,8	2,2	1,0	2,1	1,7	0,7	1,8	1,5	0,7	1,9	2,3	1,9	1,5	0,1
RMS	S	RMS	S	0,5	0,5	0,4	0,6	0,6	0,4	0,5	0,6	0,4	0,4	0,2	0,5	0,6	0,5	0,4	0,6	0,3	0,5	0,5	0,5	0,4	0,2
+		4	USU	22	33	60	56	65	28	23	26	47	51	21	57	59	29	51	48	18	43	51	66	46	9
q	кт	q	km	10	13	17	12	5	10	12	4	13	11	12	7	8	10	17	15	11	10	8	12	18	0
z. dolž.	ĥ	lon	ĥ	15,64	14,91	14,37	14,97	13,58	14,99	15,23	15,22	14,49	15,27	14,49	15,54	14,95	14,96	14,23	14,26	14,49	15,64	14,28	13,53	13,53	15,42
z. šir.	N.	lat	Ŷ	45,69	45,87	45,44	45,85	46,32	46,26	46,57	45,48	46,19	45,71	46,19	46,17	46,14	46,14	45,72	46,02	46,19	45,69	46,05	46,00	46,31	45,94
	S		S	44,6	17,0	46,5	52,0	53,4	40,3	12,0	23,9	24,8	18,2	24,4	39,9	39,8	21,7	5,8	32,1	11,6	10,3	10,4	0,5	24,0	29,9
čas (UTC)	ε	time (UTC)	min	15	18	57	51	27	53	26	55	32	3	39	54	5	36	53	59	21	18	20	23	39	45
	ч		٩	14	22	7	10	8	23	17	16	6	19	-	4	18	20	0	0	22	10	11	9	18	£
	dan		day	7	10	11	11	15	16	17	19	25	27	28	e	4	4	7	15	15	26	28	31	8	10
datum	mesec	date	month	5	2	2	2	2	2	2	2	2	2	2	e	3	с	с	с	3	3	3	3	4	4
	leto		year	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018

				Šmarjeta	Dolenja Pirošica	Drenje	Trbovlje	Preža	Preža	Pristavica pri Velikem Gabru	Pri Cerkvi - Struge	Podturjak	Novo mesto	Šentvid pri Stični	Podkraj	Daljni Vrh	Dolnji Kot	Klana, Hrvaška	Log Čezsoški	Montefosca (Čarni varh), Italija	Dolenje Kamenje	Podsmreka	Podsmreka	Log Čezsoški	Gabrje
l max	EMS 98	l max	EMS 98	čutili	≥		≡	čutili	≥	čutili	≡	>I−II	=	≥I-III	≡	≡			≡	čutili*	>I−III			≥ -	≥I-III
2	3	2	≥ ∎	1,0	1,7	1,7	0,9	2,4	2,9	0,4	1,4	1,5	0,5	0,5	0,4	0,4	1,7	1,5	1,2	1,0	1,0	1,5	1,5	0,8	1,0
RMS	s	RMS	s	0,3	0,3	0,4	0,3	0,4	0,4	0,1	0,3	0,3	0,3	0,2	0,3	0,2	0,5	0,3	0,4	0,2	0,4	0,3	0,4	0,3	0,4
400		• •		15	39	37	13	41	51	11	24	32	8	9	7	8	31	12	29	16	29	27	21	19	20
٩	km	٩	km	9	œ	16	9	18	19	5	с	10	80	5	0	8	8	13	15	14	8	15	16	6	4
z. dolž.	ĥ	lon	ĥ	15,26	15,53	15,01	15,05	14,84	14,82	14,89	14,79	14,60	15,15	14,84	14,45	15,12	14,99	14,47	13,49	13,45	15,17	14,44	14,45	13,51	15,23
z. šir.	N.	lat	N	45,89	45,88	45,79	46,15	45,55	45,55	45,94	45,78	45,89	45,83	45,95	45,97	45,84	45,80	45,52	46,31	46,19	45,85	46,03	46,03	46,31	45,98
	S		S	40,7	15,1	52,8	0,2	3,1	52,5	23,6	37,2	55,2	30,1	53,2	50,8	46,5	43,5	42,4	54,1	27,8	22,0	13,8	15,5	23,4	38,1
čas (UTC)	Ε	time (UTC)	min	57	14	36	38	22	0	12	22	0	34	16	22	16	18	50	30	25	8	20	33	52	16
	٩		٩	6	4	11	16	17	20	4	16	0	16	19	12	20	15	16	22	L	10	7	7	22	14
	dan		day	14	16	19	24	27	27	29	29	30	2	2	6	8	11	16	18	19	20	24	24	26	28
datum	mesec	date	month	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5
	leto		year	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018

			epicentral area	Klana, Hrvaška	Račje selo	Kranjska Gora	Kranjska Gora	Čučja Mlaka	Volarje	Mrzlo Polje, Hrvaška	Mrzlo Polje, Hrvaška	Torovo	Martinski Vrh, Hrvaška	Zell (Sele), Avstrija	Koritnice	Studenec	Čadrg	Prelesje	Velika Račna	Rosalnice	Kal - Koritnica	Kal pri Krmelju	Kamnik pod Krimom	Podplešivica	Kostanjevica
l max	EMS 98	l max	EMS 98		2	=	zvok	>I−II	≡		*> -	čutili	*/-/		čutili	2	≡		čutili	≡	čutili		\geq	=	čutili
2		2	N N	2,1	2,2	1,8	0,6	1,1	1,5	2,0	2,6	1,2	3,0	1,5	1,8	2,4	1,4	1,5	0,4	1,3	0,9	1,9	2,3	0,2	1,6
RMS	s	RMS	S	0,6	0,5	0,6	0,6	0,5	0,3	0,4	0,4	0,3	0,5	0,3	0,4	0,4	0,5	0,3	0,2	0,3	0,2	0,4	0,4	0,2	0,4
400		4	USU	54	60	62	12	30	28	37	52	26	52	35	40	51	40	40	10	10	12	46	51	5	38
q	km	q	km	14	13	12	10	9	12	17	17	11	11	13	20	12	4	15	e	6	6	11	17	9	11
z. dolž.	ĥ	lon	ĥ	14,46	15,00	13,80	13,79	15,35	13,70	15,81	15,81	14,48	15,39	14,33	14,27	15,01	13,75	14,20	14,67	15,34	13,60	15,13	14,41	14,38	15,09
z. šir.	N°	lat	N°	45,46	45,92	46,45	46,45	45,89	46,22	46,03	46,03	46,19	45,58	46,48	45,61	45,91	46,23	46,07	45,90	45,64	46,33	46,02	45,96	45,99	46,02
	s		S	42,7	9,3	15,1	31,7	2,0	17,8	42,4	40,2	38,5	19,7	24,0	12,6	53,3	51,9	41,2	57,9	6,5	41,2	0,7	21,0	33,3	40,7
čas (UTC)	ε	time (UTC)	min	36	20	21	24	30	42	14	11	9	23	14	56	48	39	49	29	46	37	96	22	2	13
	Ч		٩	-	3	0	0	19	18	19	17	9	12	0	e	15	22	2	14	9	13	21	9	21	-
	dan		day	29	29	4	4	9	7	7	11	12	14	15	16	16	26	1	4	17	20	22	23	25	27
datum	mesec	date	month	5	5	9	9	9	9	9	9	9	9	9	9	9	9	7	7	7	7	7	7	7	7
	leto		year	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018

eisearde crassite			epicentral area	Koprein Petzen (Pod Peco), Avstrija	Koprein Petzen (Pod Peco), Avstrija	Zafara	Medvedica	Medvedica	Kostanjevica	Glogov Brod	Kostanjevica	Nadanje Selo	Stara Gora	Andrej nad Zmincem	Družina	Koseč	Velike Dole	Podmilj	Palčje	Mala Gora	Kohanjac, Hrvaška	Kohanjac, Hrvaška	Smrečje	Godešič	Jagnjenica
l max	EMS 98	lmax	EMS 98	*/ -	čutili*	čutili	≥	≡	>I-II	čutili	>I−II	čutili	∧I–III		čutili	čutili	≡	≥	≡	čutili	*/ -	čutili*	≡	-	>I−II
2		2	N N	2,2	1,1	1,3	2,7	1,9	2,4	1,0	1,6	1,1	1,7	1,7	1,0	1,1	1,2	1,7	1,7	0,6	1,0	0,5	1,1	2,0	1,4
RMS	S	RMS	S	0,6	0,5	0,5	0,5	0,5	0,5	0,2	0,4	0,2	0,3	0,3	0,3	0,4	0,4	0,5	0,4	0,3	0,2	0,1	0,4	0,5	0,2
+		4	USU	51	29	34	58	40	56	17	36	20	38	44	15	27	18	33	39	6	6	4	21	48	23
q	km	٩	km	14	11	17	19	20	13	9	12	20	12	20	5	7	10	2	20	4	6	6	6	20	6
z. dolž.	ĥ	lon	ĥ	14,71	14,72	14,95	14,63	14,63	15,09	15,61	15,10	14,18	13,67	14,31	14,98	13,66	14,90	14,86	14,26	14,89	15,33	15,32	14,20	14,37	15,13
z. šir.	N°	lat	N	46,52	46,51	45,84	45,91	45,91	46,02	45,94	46,02	45,64	45,94	46,13	46,12	46,28	45,91	46,18	45,67	45,71	45,60	45,60	46,01	46,17	46,06
	S		v	49,8	51,9	38,6	17,5	31,0	37,9	42,0	55,5	41,0	33,9	9,6	42,4	49,5	59,7	44,3	40,5	44,0	56,9	8,2	54,8	12,5	21,7
čas (UTC)	ε	time (UTC)	min	55	23	29	25	27	7	13	56	30	48	58	13	9	44	36	5	5	44	24	41	15	13
	ء		٩	с	4	20	9	9	15	18	20	20	19	22	3	21	11	10	3	22	19	21	20	18	12
	dan		day	5	5	5	11	11	17	19	23	30	2	9	12	12	15	17	25	9	13	13	14	17	19
datum	mesec	date	month	0	8	ω	ø	8	ω	8	8	8	6	6	6	6	6	6	6	10	10	10	10	10	10
	leto		year	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018

			epicentral area	Mala Ligojna	Cerovica, Hrvaška	Radeče	Vrh pri Hinjah	Preža	Zgornji Razbor	Vrbovo	Ježevec	Jezernice, Hrvaška	Jezernice, Hrvaška	Jezernice, Hrvaška	Lukovica pri Brezovici	Bukovje pri Slivnici	Podlipa	Attimis (Ahten), Italija	Loška vas	Debenec	Ravenska vas	Dobravšce	Ježevec	Ježevec	Potiskavec
l max	EMS 98	l max	EMS 98	=	*	≡	≡	≡	čutili	=	≡	*> -	*	*> -	≡	≡	čutili		čutili	čutili	≡	≥	≥	≡	≥
2		2	N M	0,8	1,2	1,7	0,7	2,0	1,1	1,3	1,0	1,9	1,1	1,9	0,5	0,9	0,6	1,5	1,0	1,6	0,7	2,5	2,4	1,4	2,4
RMS	s	RMS	S	0,4	0,5	0,5	0,1	0,3	0,5	0,2	0,3	0,5	0,4	0,2	0,2	0,2	0,3	0,3	0,4	0,5	0,5	0,4	0,4	0,4	0,5
105	161	ţ	nst	25	16	34	15	40	œ	22	23	37	15	34	12	œ	7	27	14	36	16	62	44	19	54
ų	к ж	٩	к Ж	6	4	13	e	17	10	16	6	4	2	3	8	0	4	13	5	12	9	15	13	8	11
z. dolž.	ĥ	lon	ĥ	14,31	15,49	15,18	14,89	14,84	14,96	14,30	15,10	15,36	15,37	15,36	14,39	15,46	14,28	13,35	15,01	15,11	15,03	14,15	15,10	15,10	14,76
z. šir.	Ň	lat	N	45,99	45,81	46,07	45,81	45,54	46,47	45,56	46,02	45,74	45,73	45,74	46,02	46,16	45,99	46,20	45,76	45,93	46,13	46,09	46,02	46,03	45,79
	S		v	0,3	24,1	30,8	22,8	35,3	57,8	46,2	24,0	42,4	33,1	46,5	52,5	4,4	48,4	7,3	16,6	23,2	28,2	53,5	2,8	3,6	1,0
čas (UTC)	ε	time (UTC)	min	5	48	45	55	41	34	13	15	17	19	14	31	28	45	0	ω	8	54	48	12	39	7
	۲		ч	4	18	10	-	2	16	22	ю	19	22	4	19	19	с	2	с	1	21	10	14	21	10
	dan		day	20	21	24	27	27	28	31	2	2	2	4	4	£	7	80	თ	11	14	16	16	16	17
datum	mesec	date	month	10	10	10	10	10	10	10	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
	leto		year	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018

eiseando cusoator				Zell (Sele), Avstrija	Pijana Gora	Torreano (Tavorjana), Italija	Torreano (Tavorjana), Italija	Petkovec	Bedenj	Kladje pri Krmelju	Pri Cerkvi - Struge	Svino	Strmec	Juršče	Bukovica	Drevenik	Rodež	Radohova vas	Šentrupert	Ravno Brdo	Laze nad Krko
l max	EMS 98	l max	EMS 98	*	≡		*// -	\geq	≡	>I−III	∧I-III	∧I–III	≡	<u>∧−</u> ∧I	≡	čutili	čutili	čutili	۸I	čutili	Ξ
2		2	∆ ∎	1,8	1,4	1,9	2,3	2,8	1,0	1,8	2,4	1,6	0,9	3,4	0,9	1,5	1,3	1,2	2,1	0,7	1,1
RMS	S	RMS	S	0,4	0,4	0,4	0,5	0,4	0,3	0,5	0,5	0,3	0,4	0,5	0,4	0,3	0,3	0,3	0,5	0,1	0,3
ţ	1 E	ţ	ISI	34	30	58	66	64	6	43	52	42	12	63	20	32	32	30	56	6	14
٩	т ж	٩	к ж	11	5	16	16	15	-	11	7	15	10	14	10	14	8	10	18	5	7
z. dolž.	ĥ	nol	ĥ	14,36	15,39	13,43	13,43	14,20	15,27	15,11	14,79	13,58	15,06	14,36	14,86	15,60	15,01	14,85	15,09	14,69	14,79
z. šir.	N°	lat	N.	46,46	45,94	46,14	46,15	45,96	45,55	46,04	45,79	46,24	46,02	45,67	45,97	46,29	46,08	45,94	45,98	46,01	45,86
	S		v	55,9	37,8	44,0	45,4	16,2	39,3	15,7	36,5	29,7	44,4	59,4	32,1	33,6	26,5	48,1	41,3	31,2	2,9
čas (UTC)	E	time (UTC)	min	15	13	22	23	57	30	13	10	48	28	23	41	20	29	19	25	20	53
	٩		٩	20	10	14	14	7	17	4	12	5	-	16	15	23	1	11	18	12	6
	dan		day	17	19	19	19	20	30	ę	3	4	5	5	9	16	21	25	25	28	31
datum	mesec	date	month	1	11	11	11	11	11	12	12	12	12	12	12	12	12	12	12	12	12
	leto		year	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018

Preglednica 2: Seznam bližnjih (regionalnih) potresov, ki so jih čutili prebivalci Slovenije leta 2018 **Table 2:** List of regional earthquakes that were felt by the inhabitants of Slovenia in 2018.

detune	čas (UTC)	RA	intenziteta	notroono območio				
datum	h.min	, wiw	EMS-98	potresno obmocje				
data	time (UTC)	Bđ	intensity					
date	h.min	IVI _W	EMS-98	epicentral area				
19. 1. 2018	17.39	3,9	IV	Tolmezzo, Italija				
9. 5. 2018	21.48	3,6	IV	Bordano, Italija				
11. 8. 2018	3.30	3,0	IV	Cavazzo Carnico, Italija				
11. 8. 2018	4.52	2,7	III	Cavazzo Carnico, Italija				
16. 8. 2018	18.19	5,1	-	Montecilfone, Italija				
10. 11. 2018	7.59	2,9	III-IV	Lusevera, Italija				
18. 11. 2018	12.49	4,0	II	Santarcangelo di Romagna, Italija				

Slika 4: Nadžarišča lokalnih potresov, ki so jih leta 2018 čutili prebivalci Slovenije. Barva simbola ponazarja največjo doseženo intenziteto v Sloveniji, njegova velikost pa vrednost lokalne magnitude M_{LV} Pri razponu mogočih vrednosti intenzitete je prikazana spodnja vrednost. Slika je bila narejena s programom GMT (Wessel in Smith, 1991, 1998).

Figure 4: Epicentres of local earthquakes felt in Slovenia in 2018. The size of the symbols represents local magnitude, while the colour represents maximum intensity in Slovenia. Where there is a range of possible intensity values, the lower value is shown. Magnituda = magnitude; Intenziteta = intensity. The figure was made using GMT software (Wessel and Smith, 1991, 1998)

V nadaljevanju je opisanih pet potresov z žariščem v Sloveniji, ki so dosegli najvišje intenzitete potresov v Sloveniji leta 2018. Najmočnejša potresa pa sta bila potres pri Bovcu (M_{LV} = 3,5), ki je dosegel učinke stopnje V po EMS-98 in potres pri Knežaku (M_{LV} = 3,4), ki je dosegel učinke IV–V po EMS-98. Za vsakega izmed teh potresov je prikazana karta intenzitete po naseljih (slike 5-9) z vrisanim instrumentalno določenim nadžariščem. Intenziteta potresa v posameznem naselju je ocenjena na podlagi vprašalnikov o učinkih potresa. Vprašalnike po potresu pošljemo prostovoljnim poročevalcem ali pa jih občani sami izpolnijo na spletni strani ARSO (http://potresi.arso.gov.si/vprasalnik) ali evropske seizmološke organizacije EMSC (https://www.emsc-csem. org/Earthquake/Contribute/choose_earthquake.php). Na sliki 10 so prikazana vsa naselja, od koder smo dobili podatke, da so ljudje čutili učinke katerega izmed teh 126 potresov. Barva in oznaka na sliki opredeljujeta največjo intenziteto, doseženo v posameznem naselju leta 2018. V nadaljevanju so vse navedene magnitude lokalne (M_{LV}).

Potres 17. januarja 2018 ob 10.22 po UTC pri Bovcu (slika 5). Potres magnitude 3,5 so ljudje čutiti v območju 200 km od nadžarišča vse do naselja Goranec pri Zagrebu. Največje učinke (V po EMS-98) je potres dosegel v naseljih Bovec, Magozd, Soča in Žaga. Glasno bobnenje in močno tresenje tal sta povzročila, da so ljudje prestrašeno zapustili hiše; nekateri so pomislili, da slišijo miniranje snežnih plazov. Potres je ponekod povzročil manjše razpoke v ometu in rušenja skalovja. V Bovcu so zaradi previdnosti evakuirali osnovno šolo. Ena oseba v Srpenici je padla s stola in se pri tem poškodovala.

Potres 25. februarja 2018 ob 9.32 po UTC pri Vodicah (slika 6).Potres (M_{LV} = 1,8) je največje učinke (IV–V EMS-98) dosegel v naselju Dornice, kjer so se ponekod prevrnili ali prestavili manjši predmeti. Kljub majhni magnitudi so prebivalci potresa dokaj močno čutili. Zmerno do močno tresenje tal je prestrašilo ljudi, slišali so tudi pok, kar jih je dodatno vznemirilo. Posamezniki so zbežali na prosto.

Potres 3. marca 2018 ob 4.54 po UTC v Šmarjah pri Jelšah (slika 7). Prebivalce naselja Olimje, kjer je potres (M_{LV} = 2,1) dosegel najvišjo intenziteto (IV–V EMS-98), je prestrašilo srednje močno tresenje tal. Podatke o učinkih potresa so nam sporočili opazovalci na območju do 21 km od nadžarišča. Potres je spremljalo nenavadno močno hrumenje, ki je povzročilo, da so se mnogi prebivalci prebudili.

Potres 4. marca 2018 ob 18.05 po UTC pri Zagorju ob Savi (slika 8). Potres je dosegel najvišjo intenziteto IV-V EMS-98 v naselju Loke pri Zagorju. Prebivalci so poročali o zmerno do močnem tresenju tal. Slišali so nenavadno ropotanje, kot bi se porušila streha ali stena in zaznali nenavadno obnašanje živali. Ponekod so se prestavili manjši predmeti.

Potres 5. decembra 2018 ob 16.23 po UTC pri Knežaku (slika 9). Ta potres magnitude 3,4 so ljudje čutiti v območju 108 km od nadžarišča vse do naselja Ravne na Koroškem. Največje učinke (IV–V po EMS-98) je potres dosegel v naseljih Podgrad in Postojna. Ljudje so tresenje opisovali, kot da bi se skozi sobo sprehodil velikan s težko nogo. Poročali so o žvenketanju kozarcev, tresenju pohištva in lončnici, ki je padla s police. Omenili so, da je potres spremljalo glasno pet do sedem sekundno bobnenje, kot bi se na oddaljenem strelišču sprožile verižne

Slika 5: Intenziteta potresa magnitude 3,5 pri Bovcu 17. januarja 2018 ob 10.22 po UTC v posameznih naseljih; a) celotno območje, kjer so potres čutili; b) širše nadžariščno območje **Figure 5:** Intensity of the earthquake near Bovec (M_{LV} =3.5) on 17 January 2018 at 10:22 UTC in individual settlements; a) felt area; b) wider epicentral area nadžarišče = epicentre; čutili = felt; niso čutili = not felt

Slika 6: Intenziteta potresa magnitude 1,8 pri Vodicah 25. februarja 2018 ob 9.32 po UTC v posameznih naseljih

Figure 6: Intensity of the earthquake near Vodice (M_{LV} =1.8) on 25 Februar 2018 at 9:32 UTC in individual settlements. Nadžarišče = epicentre; čutili = felt; zvok = thunder; niso čutili = not felt

eksplozije. Mnogo ljudi je v bližini žarišča potresa zbežalo na prosto. Iz Postojne smo dobili poročilo o manjših lasastih razpokah v ometu. Potres je prestrašil nekatere domače živali in ni povzročil gmotne škode.

Sklepne misli

Leta 2018 so se v Sloveniji ali njeni bližnji okolici zgodili 2103 potresi. Sedemindvajset potresov je imelo lokalno magnitudo med 2,0 in 2,9, trije potresi pa so imeli magnitudo 3,0 ali večjo od te vrednosti. Večina potresov (97 %) je imela lokalno magnitudo manjšo od 1,7. Vsi potresi na območju Slovenije in bližnje okolice so imeli žarišče do globine 27 km.

V Sloveniji so leta 2018 prebivalci čutili vsaj 126 potresov (sliki 4 in 11). En potres je dosegel intenziteto V po EMS-98, pet potresov intenziteto IV–V, 22 potresov intenziteto IV, 25 potresov intenziteto III–IV, 37 potresov intenziteto III, trije potresi intenziteto II–III in en potres intenziteto II po EMS-98. Za preostale potrese (32) nam poročevalci niso poslali dovolj informacij o učin-kih, zato jim ni bilo mogoče določiti intenzitete po evropski potresni lestvici. Intenziteta je pri teh potresih ocenjena samo opisno, in sicer z oznako »čutili« (31 potresov) oziroma »zvok« (en potres), če tresenja niso čutili, ampak so le slišali bobnenje (slika 11).

Slika 7: Intenziteta potresa magnitude 2,1 pri naselju Šmarje pri Jelšah 3. marca 2018 ob 4.54 po UTC v posameznih naseljih

Figure 7: Intensity of the earthquake near Šmarje pri Jelšah (M_{LV} =2.1) on 3 March 2018 at 4:54 UTC in individual settlements. Nadžarišče = epicentre; čutili = felt; zvok = thunder; niso čutili = not felt

Slika 8: Intenziteta potresa magnitude 1,7 pri Zagorju ob Savi 4. marca 2018 ob 18.05 po UTC v posameznih naseljih

Figure 8: Intensity of the earthquake near Zagorje ob Savi (M_{LV} =1,7) on 4 March 2018 at 18:05 UTC in individual settlements. Nadžarišče = epicentre; čutili = felt; zvok = thunder; niso čutili = not felt

Slika 9: Intenziteta potresa magnitude 3,4 pri Knežaku 5. decembra 2018 ob 16.23 po UTC v posameznih naseljih

Figure 9: Intensity of the earthquake near Knežak (M_{LV} =3.4) on 5 December 2018 at 16:23 UTC in individual settlements. Nadžarišče = epicentre; čutili = felt; zvok = thunder; niso čutili = not felt

Makroseizmični podatki za potrese bi bili zelo pomanjkljivi ali celo nedostopni, če nam ne bi pomagali številni prostovoljni poročevalci. Zaradi Splošne uredbe EU o varstvu osebnih podatkov (General Data Protection Regulation – GDPR) smo vse registrirane poročevalce znova zaprosili za privolitev za hrambo in uporabo osebnih podatkov. Osebne podatke (ime, priimek, naslov, lokacija v času potresa, morebitni e-naslov ter neobvezne podatke telefon, spol, datum rojstva) uporabljamo izključno za namen raziskovanja potresov in njihovih učinkov. Privolitev je poslalo 985 registriranih poročevalcev, ki izpolnjujejo papirne vprašalnike, ter 1354 poročevalcev, ki izpolnjujejo spletne vprašalnike. Vsem se za sodelovanje lepo zahvaljujemo, prav tako pa tudi neregistriranim poročevalcem, ki izpolnjujejo spletne vprašalnike o učinkih potresov.

Registriranim poročevalcem smo leta 2018 poslali 11.343 makroseizmičnih vprašalnikov za 46 potresov (3554 papirnih in 7789 spletnih vprašalnikov). Poročevalci so vrnili 2458 izpolnjenih papirnih vprašalnikov (69 %) in 3027 spletnih vprašalnikov (39 %). Skupaj (zaprošenih ali poslanih na lastno pobudo) smo prejeli 6965 izpolnjenih spletnih vprašalnikov, med katerimi je bilo:

- 3875 poročil, da so zaznali potres,
- 2735 poročil, da niso zaznali potresa,
- 326 poročil, da so zaznali nekaj drugega (npr. rudniški dogodek, razstreljevanje, promet),
- 29 poročil je bilo brez podane lokacije, zato jim nismo mogli določiti vrste dogodka

Slika 10: Največja intenziteta potresa izmed vseh, ki so se zgodili leta 2018, ocenjena v posameznem naselju v Sloveniji.

Figure 10: Overall map of the maximum intensity in individual settlements in Slovenia of all the earthquakes in 2018 felt by inhabitants of Slovenia. Čutili = felt; zvok = thunder

Slika 11: Porazdelitev največje intenzitete po EMS-98 potresov v Sloveniji leta 2018 *Figure 11:* Distribution of the earthquakes in Slovenia in 2018 with respect to maximum EMS-98 intensity. Zvok = thunder, čutili = felt

Tudi leta 2018 smo pri zbiranju in izmenjavi podatkov sodelovali s seizmologi iz sosednjih držav (Italije, Avstrije in Hrvaške). Zahvaljujemo se jim za poslane oziroma na spletu objavljene makroseizmične podatke.

Viri in literatura

ARSO, 2018. Letni seizmološki bilteni, 1997-2018. Arhiv Agencije RS za okolje, Ljubljana.

The Central and Eastern European Earthquake Research Network - CE3RN, 2018. http://www.ce3rn.eu/ (2018).

Google Maps. 2018. https://www.google.com/maps.

- Grünthal, G. (ur.), 1998. European Macroseismic Scale 1998 (EMS-98). Conseil de l'Europe, Cahiers du Centre Européen de Géodynamique et de Séismologie, Volume 15, Luxembourg.
- Lienert, B. R., Berg, E., Frazer, L. N. 1988. HYPOCENTER: An earthquake location method using centered, scaled, and adaptively least squares. Bull. Seism. Soc. Am., 76, 771–783.
- Lienert, B. R. 1994. HYPOCENTER 3.2 A Computer Program for Locating Earthquakes Locally, Regionally and Globally. Hawaii Institute of Geophysics & Planetology, Honolulu, 70 str.
- Michelini, A., Živčić, M., Suhadolc, P. 1998. Simultaneous inversion for velocity structure and hypocenters in Slovenia. Journal of Seismology, 2 (3), 257–265.
- OGS (Oservatorio Geofisco Sperimentale), 2018. Bolletino della Rete Sismometrica del Friuli Venezia Giulia. OGS, Centro ricerche sismologiche, Udine, computer file. Spletni naslov: http://www.crs.inogs.it/bollettino/RSFVG/2018/RSFVG-2018.en.html.
- Poljak, M., Živčić, M., Zupančič, P. 2000. The Seismotectonic Characteristics of Slovenia. Pure appl. Geophys., vol. 1, 57, 37–55.
- RGU (Republiška geodetska uprava), 1995. Centroidi naselij (geografske koordinate), računalniški seznam.
- Vidrih, R., Sinčič, P., Tasič, I., Gosar, A., Godec, M., Živčić, M. 2006. Državna mreža potresnih opazovalnic. Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana, 287 str.
- Wessel, P., Smith, W. H. F. 1991. Free software helps map and display data. Eos, Trans. Amer. Un., Vol. 72 (441), 445–446.
- Wessel, P., Smith, W. H. F. 1998. New, improved version of the Generic Mapping Tools released. EOS Trans. AGU, Vol. 79, 579.
- ZAMG, 2017–2018. Preliminary bulletin of regional and teleseismic events recorded with ZA-MG-stations in Austria. Zentralanstalt für Meteorologie und Geodynamik, Wien.
- Živčić, M., Bondár, I., Panza, G. F. 2000. Upper Crustal Velocity Structure in Slovenia from Rayleigh Wave Dispersion. Pure Appl. Geophys., Vol. 157, 131–146.

Izidor Tasič, Marko Mali, Luka Pančur, Peter Sinčič, Igor Pfundner, Bojan Uran, Jože Prosen

Delovanje državne mreže potresnih opazovalnic v letu 2018 Seismic Stations Operation in Slovenia in 2018

Abstract

Povzetek

Z glavnimi parametri, ki so vplivali na zanesljivost delovanja Državne mreže potresnih opazovalnic (DMPO) v letu 2018, predstavljamo povzetek analize delovanja in pregled pomembnejših dogodkov. Podajamo število prekinitev komunikacije za posamezno potresno opazovalnico (izpad) glede na trajanje. Za najdaljši izpad na posamezni potresni opazovalnici smo opisali njegov vzrok. Podajamo tudi časovne intervale, znotraj katerih ni delovalo po več potresnih opazovalnic hkrati ter vzroke za omenjeno nedelovanje. Na osnovi rezultatov analize redno poteka tudi razvoj in izvedba posodobitev, ki prispevajo k boljšemu in zane-

The results of analysis for operation of Seismic Network of the Republic of Slovenia (SNRS) in 2018 are presented in this article. The main upgrades and events that have influenced the operating quality of SNRS are also presented, along with parameters describing its reliability. The number and duration of out-of-operation periods (OOOP) for all seismic stations were evaluated. The analysis of causes of the longest OOOP for particular seismic station was made. Time intervals, when more seismic stations were out of service simultaneously, are identified. Based on the results of the analysis, improvements are constantly implemented, contributing to better and more reliable operation of SNRS.

Uvod

sljivejšemu delovanju DMPO.

Državno mrežo potresnih opazovalnic (DMPO) sestavlja 26 sodobno opremljenih digitalnih opazovalnic (slika 1). Vsaka potresna opazovalnica je opremljena z zajemalno enoto in dolgo--periodnim seizmometrom ter s pospeškometrom (glej sliko 1). V letu 2018 smo zaključili opremljanje celotne DMPO s pospeškometri, s čimer smo povečali dinamično območje potresnih opazovalnic, saj omogočajo beleženje večjih amplitud nihanja tal pri močnejših potresih. Poleg seizmološke merilne opreme se na opazovalnicah nahaja še vrsta druge podporne opreme, ki jo lahko razdelimo v štiri sklope: komunikacijska oprema, oprema za zagotavljanje neprekinjene oskrbe z električno energijo, oprema za dodaten nadzor delovanja zajemalnih enot ter oprema za nadzor vdora vode in beleženje temperature ob seizmometru.

Glavna naloga Sektorja za potresna opazovanja na Uradu za seizmologijo je neprestano spremljanje delovanja celotne opreme na DMPO in zagotavljanje optimalne kakovosti seizmoloških podatkov ter v največjem možnem obsegu preprečevanje njihove izgube. V ta namen na DMPO izvajamo različne analize, na osnovi katerih izboljšujemo njeno delovanje.

Vsi posegi na DMPO ter rezultati obsežne analize vseh pomembnih parametrov, ki vplivajo na kakovost delovanja DMPO, so podani v internem poročilu Sektorja za potresna opazovanja (SPO, 2018). Le-to obravnava naslednje parametre, ki opisujejo kakovost delovanja DMPO:

- Podroben opis vseh del in posodobitev, ki so bile izvedene na posamezni potresni opazovalnici.
- Število izpadov komunikacije posamezne potresne opazovalnice glede na trajanje izpada. Za daljše izpade (več kot 2 uri), ki niso bili posledica napake na komunikacijah, podajamo tudi njihove vzroke.
- Skupno trajanje izpadov posamezne potresne opazovalnice glede na določen časovni interval ter skupno trajanje izpadov posamezne potresne opazovalnice v določenem mesecu. Rezultati za posamezno opazovalnico so podani v obliki preglednic in grafov.
- · Podroben opis izpadov, ki so povzročili izgubo podatkov.
- Število avtomatskih nastavitev mirovne lege seizmometra (za opazovalnice, opremljene s tipom seizmometra, ki to funkcijo omogoča).
- Analiza nivoja celotnega seizmičnega nemira (predstavlja kombinacijo naravnih in umetnih seizmičnih izvorov) na posamezni potresni opazovalnici. Omenjena analiza je zelo pomembna s stališča ugotavljanja morebitnih okvar na seizmološki merilni opremi. Večina menjav seizmometrov oziroma pospeškometrov se izvede na osnovi te analize.
- Časovni potek mirovne lege in napajalne napetosti na posamezni potresni opazovalnici.
- Časovni potek vrednosti temperature ob seizmometru.
- Analiza vdorov vode v jaške potresnih opazovalnic. Podajamo število vdorov vode in datume omenjenih dogodkov.

V tem prispevku podajamo le pomembnejše točke iz internega poročila (SPO, 2018). Glavne posodobitve, ki smo jih v letu 2018 izvedli na DMPO, pa so naslednje:

- Nadgraditev DMPO s seizmometri tipa Trilium 120QA. Seizmometra smo namestili na potresni opazovalnici VOJS in CEY. Na ostalih potresnih opazovalnicah smo redno spremljali pravilnost delovanja merilne opreme in na nekaterih opazovalnicah izvedli menjavo seizmometra oziroma pospeškometra.
- V letu 2018 je bila celotna DMPO že opremljena z dodatnimi »zunanjimi pomnilniki« seizmoloških signalov (JetBox, Raspberry Pi). Na posameznih potresnih opazovalnicah z Q330 enotami smo napajanje teh pomnilniških enot priključili na ločen akumulator preko ločene akumulatorske zaščite. S tem smo dosegli 7 dnevno avtonomijo primarnega seizmološkega zajemalnega sistema (zajemalna enota Q330HRS + seizmometer).
- Namestitev dodatnega pospeškometra na potresne opazovalnice GROS, ZAVS, GCIS, in DOBS. Nova zajemalna enota tipa Q330HRS omogoča zajem šestih kanalov, zato smo na omenjenih potresni opazovalnici poleg že nameščenega seizmometra namestili še pospeškometer. S tem smo močno povečali dinamično območje potresne opazovalnice ter razširili mrežo potresnih opazovalnic, ki omogočajo beleženje večjih pospeškov. V letu 2018 je tako celotna DMPO opremljena s šest-kanalnim zajemanjem (seizmometer + pospeškometer).
- Posodobitev tipa komunikacije na potresnih opazovalnicah SKDS, PERS in GROS. Po novem je nameščen CISCO usmerjevalnik z vgrajenim GSM modemom, ki se v primeru neustreznega delovanja sam ponovno zažene. Ves omenjene opazovalnice za komunikacijo uporabljajo LTE omrežje.

Slika 1: Državna mreža potresnih opazovalnic. Prikazana je razporeditev različnih tipov seizmometrov, pospeškometrov in zajemalnih enot po posameznih potresnih opazovalnicah. *Figure 1:* Seismic network of the republic of Slovenia. On the picture there are seismometers, accelerometers and acquisition units with their locations.

Delovanje DMPO v letu 2018

V letu 2018 je bila celotna DMPO opremljena z dodatnimi zunanjimi pomnilniškimi enotami (JetBox oziroma Raspberry Pi2) in zajemalnimi enotami Q330HRS, ki imajo vgrajen tudi tako imenovan Baler. Le-ta podobno kakor zunanje pomnilniške enote dodatno hrani seizmološke podatke. Na ta način (dvojno hranjenje podatkov na lokaciji potresne opazovalnice) do izgube podatkov zaradi daljše prekinitve komunikacije ne more več priti.

Do trajne izgube seizmičnih podatkov še vedno lahko pride zaradi daljše prekinitve oskrbe potresne opazovalnice z električno energijo. Z nadgraditvijo napajalnih sistemov (Mali in drugi, 2008) in ločenim napajanjem komunikacijske opreme in zunanjih pomnilniških enot je avtonomija delovanja seizmološke opreme najmanj en teden. Avtonomija delovanja komunikacijske opreme pa najmanj en dan. V letu 2018 smo na potresnih opazovalnicah SKDS, PERS in GROS posodobili komunikacijsko opremo, s čimer se je močno izboljšala kakovost komunikacij. V letu 2018 je bilo 21 potresnih opazovalnic opremljenih z nadzornim sistemom (Mali, 2014). Sistem omogoča nadzor temperature ob seizmometru in v obeh jaških preverja potencialni vdor vode ter v primeru odstopanja parametrov od mejnih vrednosti o tem obvesti dežurnega tehnika.

Na slikah 2a in 2b je prikazan pregled delovanja DMPO v letu 2018, kjer črna oziroma modra barva predstavljata nedelovanje oziroma izpad potresne opazovalnice. Pregled vseh izpadov

Slika 2a: Pregled delovanja DMPO v letu 2018. Izpadi so označeni s črno barvo. Ločljivost slike omogoča, da so vidni le izpadi, daljši od treh ur.

Figure 2a: An overview of out-of-operation periods (black lines) for seismic network of Slovenia in the year 2018. The resolution allows us to distinguish only out-of operation periods longer than three hours.

Slika 2b: Pregled delovanja DMPO v letu 2018. Izpadi so označeni z modro barvo. Ločljivost slike omogoča, da so vidni le izpadi, daljši od ene ure.

Figure 2b: An overview of out-of-operation periods (blue lines) for seismic network of Slovenia in the year 2018. The resolution allows us to distinguish only out-of operation periods longer than one hour.

ter opis najdaljših izpadov za posamezno potresno opazovalnico so podani v preglednicah 1 in 2. Večina daljših izpadov, ki so posledica izpada na komunikacijskih poteh, ne predstavlja več trajne izgube podatkov, ampak le nezmožnost analize morebitnega seizmičnega dogodka v realnem času.

Preglednica 1: Skupni podatki o številu izpadov in njihovem trajanju za DMPO v letu 2018. **Table 1:** An overview of the out-of-operation periods (OOOP) for Seismic Network of teh Republic of Slovenia in the year 2018.

oznaka opazovalnice	število vseh izpadov	skupno trajanje vseh izpadov	število izpadov daljših od 2h
station code	number of OOOP	total duration of OOOP	number of OOOP > 2h
BOJS	37	7h 41m	1
CADS	107	1d 15h 45m	1
CEY	50	3h 20m	0
CRES	170	8h 54m	0
CRNS	46	2h 45m	0
DOBS	51	3d 12h 33m	1
GBAS	314	15h 58m	0
GBRS	113	4h 39m	0
GCIS	894	13d 15h 47m	27
GOLS	112	3h 47m	0
GORS	147	20h 6m	2
GROS	294	15d 3h 4m	2
JAVS	7948	41d 4h 0m	24
KNDS	4130	43d 19h 31m	28
KOGS	39	2h 49m	0
LEGS	116	13d 15h 16m	3
LJU	70	8h 34m	2
MOZS	102	4h 37m	0
PDKS	66	1d 17h 43m	3
PERS	481	29d 2h 59m	5
ROBS	104	6h 29m	1
SKDS	858	22d 11h 13m	21
VISS	63	2h 11m	0
VNDS	351	3d 21h 11m	4
VOJS	202	1d 3h 31m	2
ZAVS	1792	38d 18h 54m	92
skupaj	18657		219

oznaka opazovalnice	nastop najdaljšega izpada	trajanje najdaljšega izpada	vzrok najdaljšega izpada
station code	date/time of the longest OOOP	duration of the longest OOOP	cause for the longest OOOP
BOJS	14. 5. / 06.29	6h 48m 37s	napaka na optičnem vodu
CADS	6. 6. / 23.40	1d 10h 22m 41s	napaka na modemu – ročni reset
CEY	10. 8. / 11.02	1h 32m 26s	izpad na komunikacijah
CRES	8. 6. / 19.27	0h 22m 21s	izpad na komunikacijah
CRNS	9. 7. / 22.36	1h 19m 16s	izpad na komunikacijah
DOBS	1. 1. / 00.00	3d 9h 37m 4s	okvara LAN zaščite pred Q330HRS enoto
GBAS	5. 7. / 22.16	1h 50m 16s	izpad na komunikacijah
GBRS	18. 5. / 11.39	0h 47m 2s	izpad na komunikacijah
GCIS	8. 12. / 06.06	10h 16m 36s	problemi z bazno postajo
GOLS	16. 4. / 19.55	0h 5m 55s	izpad na komunikacijah
GORS	9. 5. / 22.37	6h 23m 5s	izpad na komunikacijah
GROS	28. 2. / 08.56	13d 0h 33m 45s	napaka na komunikacijskih vodih
JAVS	26. 10. / 20.37	5d 2h 25m 43s	problemi z bazno postajo
KNDS	1. 1. / 00.00	3d 10h 19m 46s	izpad napajanja – FID stikalo
KOGS	31. 12. / 10.37	1h 44m 10s	izpad na komunikacijah
LEGS	1. 6. / 07.59	7d 2h 4m 58s	napaka na komunikacijskih vodih
LJU	19. 9. / 22.08	3h 43m 5s	izpad na komunikacijah
MOZS	29. 5. / 13.26	0h 49m 59s	izpad na komunikacijah
PDKS	19. 9. / 11.03	21h 17m 14s	izpad na komunikacijah
PERS	26. 4. / 16.09	12d 17h 6m	problemi z LTE modemom
ROBS	31. 7. / 07.33	2h 59m 39s	izpad na komunikacijah
SKDS	3. 5. / 22.27	14d 9h 44m 47s	okvara na komunikacijskih vodih + uničene krona zaščite
VISS	20. 3. / 01.16	0h 9m 48s	izpad na komunikacijah
VNDS	23. 3. / 19.58	2d 14h 8m 48s	napaka na modemu – ročni reset
VOJS	27. 4. / 14.03	2h 34m 26s	izpad na komunikacijah
ZAVS	27. 11. / 20.16	5h 59m 51s	izpad na komunikacijah

Preglednica 2: Pregled najdaljših izpadov za posamezno potresno opazovalnico DMPO in razlogi zanje. **Table 2:** An overview and causes for the longest OOOP's for each station of the Seismic Network of the Republic of Slovenia in the year 2018.

Na sliki 3 je prikazano skupno trajanje izpadov glede na število sočasno nedelujočih opazovalnic. Posamezna vrednost predstavlja skupno trajanje vseh sočasnih izpadov natanko določenega števila opazovalnic. Stolpci se med seboj izključujejo. Skupno trajanje izpadov v posameznem stolpcu sestavlja več izpadov v katere je bilo vključeno enako število potresnih opazovalnic. Postopek samodejnega lociranja potresa vsebuje ocenjevanje številnih neznank, zato potrebuje podatke čim večjega števila potresnih opazovalnic. Če v trenutku potresa pride do izpada večjega števila potresnih opazovalnic, je določitev potresnih parametrov otežena oziroma manj natančna. Pregled sočasnih izpadov je podan v preglednici 3.

število opaz./		d	olžina trajanja	izpadov / leng	gth of downtim	ie	
no. of stations	0–5 min	5–15 min	15–30 min	30–45 min	45–60 min	60–120 min	> 120 min
2	4774	887	788	167	96	217	37
3	1916	294	312	40	31	74	6
4	718	67	101	13	2	5	1
5	128	10	15	0	0	0	0
6	18	0	1	0	0	0	0
7	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0
9	1	0	0	0	0	0	0
10	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0
20	2	0	0	0	0	0	0
21	0	0	0	0	0	0	0
22	2	0	0	0	0	0	0
23	1	0	0	0	0	0	0
24	1	0	0	0	0	0	0
25	4	0	0	0	0	0	0
26	26	0	0	0	0	0	0

Preglednica 3: Število izpadov po dolžini in številu sočasno izpadlih potresnih opazovalnic. **Table 3:** An overview of simultaneous OOOP's for Seismic Network of the Republic of Slovenia.

Slika 3: Skupno trajanje izpadov več potresnih opazovalnic hkrati (leto 2018). **Figure 3:** The total duration of OOOP's that occurred at several seismic stations simultaneously (year 2018).

Zaključek

Predstavili smo najpomembnejše posodobitve, ki smo jih v letu 2018 izvedli na DMPO, in povzetek analize delovanja DMPO v letu 2018. Ugotovili smo, da se izpadi (prekinitve v komunikaciji s posamezno potresno opazovalnico) pojavljajo neprestano. Medtem, ko je vzrok krajših izpadov vedno manjša napaka na komunikacijah, pa so vzroki daljših izpadov raznovrstni. V grobem jih lahko delimo v tri skupine. V prvi skupini so problemi v zvezi z dobavo električne energije. V drugo skupino sodijo izpadi, ki so povezani s komunikacijsko potjo in opremo. V tretjo skupino pa uvrščamo okvare na seizmološki opremi (okvare na seizmometrih in zajemalnih enotah). S podpornimi sistemi, ki jih razvijamo in dopolnjujemo ter z rednimi posodobitvami in testiranji seizmološke merilne opreme, zmanjšujemo število in dolžino izpadov zaradi vseh naštetih vzrokov. Največjo pozornost seveda namenjamo preprečitvi okvar na seizmološki merilni opremi.

Podali smo tudi analizo izpadov več potresnih opazovalnic hkrati. Posebno pozornost smo namenili predvsem tako imenovanim kritičnim izpadom, pri katerih več kot 75 % potresnih opazovalnic oziroma 20 ali več potresnih opazovalnic izpade za več kot 5 minut. Ugotovili smo, da v letu 2018 tovrstnih izpadov ni bilo.

Rezultati analiz delovanja opreme so nam v veliko pomoč tudi pri nadaljnjem delu. Na njihovi osnovi vsakoletno izluščimo najpogostejše napake, ki povzročijo posamezen izpad oziroma so vzrok za slabšo kvaliteto zajetih seizmičnih signalov. S pomočjo teh spoznanj izboljšujemo opremo in postopke na mreži potresnih opazovalnic in tako izboljšujemo njeno delovanje ter preprečujemo morebitno škodo.

Viri in literatura

- Mali, M., 2014. Nadzorni sistem za kontrolo nivoja vode in stabilnosti temperature, Potresi v letu 2013, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Mali, M., Tasič, I., Pančur. L., 2008. Vpliv brezprekinitvenega napajanja na delovanje potresne opazovalnice. Potresi v letu 2007, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- Tasič. I., Pančur L., Pfundner, I., Mali, M., 2010. Povečanje lokalnega pomnilnika za zajemalne enote Q730, Potresi v letu 2009, Agencija RS za okolje, Urad za seizmologijo in geologijo, Ljubljana.
- SPO, 2018. Državna mreža potresnih opazovalnic, delovanje v letu 2018, interno poročilo, Ljubljana.

Najmočnejši potresi po svetu leta 2018 The World's Largest Earthquakes in 2018

Povzetek

Leta 2018 je bilo po svetu 44 potresov, ki so dosegli ali presegli navorno magnitudo (M_w) 6,5. En potres je imel navorno magnitudo večjo ali enako 8,0; šestnajst potresov je imelo magnitudo med 7,0 in 7,9. Vsaj 32 potresov je zahtevalo človeška življenja, skupaj je bilo vsaj 5228 žrtev. Najmočnejši (M_w = 8,2) potres je nastal 19. avgusta pod dnom Tihega oceana na območju Fidžija v globini 600 km. Največ žrtev, vsaj 4340, je zahteval potres magnitude 7,5, ki se je zgodil 28. septembra na območju Indonezije. Najmočnejši potres v Evropi z magnitudo 6,8 je 25. oktobra stresel območje Jonskega morja. Največ škode je povzročil na grškem otoku Zakintos.

Abstract

In 2018 there were 44 earthquakes across the world that either reached or exceeded a moment magnitude (M) of 6.5. One had a moment magnitude greater than or equal to 8.0, and 16 were between 7.0 and 7.9. At least 32 earthquakes claimed human lives; in total there were at least 5228 victims. The most devastating earthquake of magnitude 7.5 took place on 28 September in Indonesia, where at least 4340 people were killed. The 19 August earthquake near Fiji, under the Pacific ocean bottom, ranked highest in terms of the released energy, with a moment magnitude of 8.2. The strongest earthquake in Europe, with a moment magnitude of 6.8, struck in the Ionian Sea on 30 September. The most damaged was the Greek island of Zakyntos.

Uvod

Zemlja je v svoji notranjosti razdeljena na plasti, ki se med seboj razlikujejo po kemijski in fizikalni sestavi, reološkem stanju in temperaturi ter mnogih drugih lastnostih. V osnovi jo lahko razdelimo na skorjo, plašč (zgornji, spodnji) in jedro (zunanje, notranje). Zemljina trdna lupina se imenuje litosfera in zajema Zemljino skorjo ter vrhnji del zgornjega plašča. Povprečno je debela okoli 100 km pod celinami in 50 km pod oceani. Sestavlja jo več tektonskih plošč (slika 1), največje so Tihomorska, Severnoameriška, Južnoameriška, Evrazijska, Afriška, Avstralska in Antarktična. Za svetovno potresno dejavnost so pomembne tudi številne manjše plošče. Pod litosfero je astenosfera (preostali del zgornjega plašča), ki je zaradi visokih temperatur viskozna oziroma židka, zaradi česar nastajajo tu počasni tokovi, ki v dolgem časovnem obdobju mešajo snovi. Tektonske plošče se zaradi konvekcijskih tokov v astenosferi nenehno počasi premikajo. Med seboj se lahko razmikajo (razmične ali divergentne meje), primikajo (primične ali konvergentne meje) ali drsijo druga ob drugi (zmične ali transformne meje plošč). Razmikanje tektonskih plošč lahko poteka na območju oceanov (vdiranje magme iz astenosfere skozi razpoko med ploščama, pri čemer se magma strjuje v novo oceansko skorjo in nastanejo oceanski grebeni) ali na celinah (tektonsko ugrezanje ob nastajanju razsežnega tektonskega jarka ali razpoke v celinski plošči, ki končno postane meja plošč). Na območjih primikanja plošč se oceanska plošča podriva pod drugo oceansko ali celinsko ploščo, lahko pa celinski plošči trčita, kar

Slika 1: Porazdelitev najmočnejših potresov leta 2018 na Zemlji. Velikost krogov kaže potresno magnitudo, barva pa žariščno globino. Označene so tudi glavne tektonske plošče. *Figure 1:* Distribution of the strongest earthquakes in 2018. The size of the circle indicates the magnitude and the colour designates the focal depth. The main tectonic plates are also shown.

povzroči dviganje skorje in nastanek gorovij. Prelom, ob katerem plošči drsita druga ob drugi, imenujemo transformni prelom (Lapajne, 2013, Struktura Zemlje, 2019).

Potresi so posledica nenadnega premika dveh tektonskih blokov. Nastajajo predvsem na stikih in v bližini stikov plošč. Največ potresov (približno 90 % vseh) se zgodi v obtihomorskem pasu, imenovanem tudi Ognjeni obroč, ki obkroža Tihi ocean, tudi večina najmočnejših se zgodi tam (NEIC, 2019a). Na sliki 1 so narisani potresi, ki so leta 2018 dosegli ali presegli navorno magnitudo 6,5 (5,5 za evropsko-sredozemsko območje), in tisti šibkejši, ki so zahtevali človeška življenja. Navorna magnituda je mera za velikost potresa, ki velja tudi za najmočnejše potrese in je določena s potresnim navorom. Ta je opredeljen kot zmnožek strižnega modula kamnine prelomnega območja, površine potresnega pretrga in povprečne velikosti zdrsa vzdolž preloma. Lahko ga izračunamo iz zapisov potresnega valovanja ali iz geoloških opazovanj (Lapajne, 2013).

Pregled najmočnejših potresov

V preglednici 1 so podatki o najmočnejših potresih, ki so zaznamovali leto 2018 (NEIC, 2019b; NEIC, 2019c; List of earthquakes in 2018, 2019). Za vsak potres so navedeni datum (mesec, dan), žariščni čas po svetovnem času (Coordinated Universal Time) – UTC (ura, minuta), koordinati nadžarišča (zemljepisna širina /°/, zemljepisna dolžina /°/), globina žarišča (km) in navorna magnituda (M_w). V stolpcu o številu žrtev je navedeno skupno število žrtev za posamezen potres. Preglednica se konča z imenom širšega nadžariščnega območja potresa.

Leta 2018 je bilo 44 potresov, ki so dosegli ali presegli navorno magnitudo 6,5. En potres je imel navorno magnitudo večjo od 8,0, šestnajst pa jih je bilo z magnitudo med 7,0 in 7,9; to pomeni, da leto 2018 ne odstopa od dolgoletnega povprečja. Po statističnih analizah se je v obdobju 1990–2018 v povprečju vsako leto zgodil en potres z magnitudo, večjo ali enako 8,0; 14 pa jih je imelo magnitudo med 7,0 in 7,9 (slika 2; NEIC, 2019d). Dvaintrideset potresov je zahtevalo človeška življenja, vsi skupaj pa so leta 2018 zahtevali vsaj 5228 življenj.

Najbolj uničujoč potres leta 2018 je bil močen (M_w = 7,5) plitev potres, ki je 28. septembra ob 10.02 po UTC (18.02 po lokalnem indonezijskem času) stresel Sulavezi. To je eden od štirih Velikih Sundskih otokov na vzhodu Tihega oceana in v celoti pripada Indoneziji. Njegova površina ustreza približno površini osmih Slovenij in ima 18,4 milijona prebivalcev. Otok ima štiri glavne polotoke (Minahasa, Vzhodni, Južni in Jugovzhodni polotok) z zelo razčlenjeno obalo. Osrednji del je gorat, najvišja gora je Rantemario s 3478 metri. Nadžarišče potresa (slika 3) je bilo na vratu polotoka Minahasa, ki pomeni severno mejo zaliva Tomini oziroma južno mejo Celebeškega morja. Sulavezi leži na območju delovanja Avstralske, Tihomorske, Filipinske plošče in plošče Sunda. Na zmičnem prelomu znotraj zadnje od omenjenih je nastal tokratni potres. Aktiviral se je prelom dolžine 150 in širine 30 km (NEIC, 2018a; Sulawesi, 2019).

V potresu so bile številne zgradbe porušene, na območju Paluja se je zgodila celo likvifakcija, kar pomeni utekočinjenje tal (Gosar, 2017). Poleg samega tresenja tal je po obalah blizu nadžarišča pustošil tudi cunami. Čeprav pri potresih, ki so posledica zmika dveh plošč, ne pričakujemo tako visokih valov, je lokalno cunami dosegel višino tudi do šest metrov (v Paluju). Kot možni vzroki takega pojava so navajali podvodni plaz, zelo razčlenjeno obalo in ozke zalive **Preglednica 1:** Seznam potresov leta 2018, katerih navorna magnituda M_w je bila enaka ali večja od 6,5 (5,5 za evropsko-sredozemsko območje). Dodani so potresi (21), katerih magnituda je bila sicer manjša, a so zahtevali smrtne žrtve.

Table 1: List of the earthquakes in 2018 with a moment magnitude (M_w) equal to or greater than 6.5 (5.5 for the European-Mediterranean region). Earthquakes (21) with magnitudes below 6.5 which claimed human lives are also included. S = North; J = South; V = East; Z = West.

deture	čas (UTC)	koor	dinati	globina	mag.	število	a hana žia
datum	ura.min	širina (°)	dolžina (°)	km	M _w	žrtev	оршосје
dete	time (UTC)	coord	dinates	depth	mag.	number	
date	hh.min	lat (°)	lon (°)	km	km M _w	victims	area
10. 1.	2.51	17,48 S	83,52 Z	19	7,5		pod morskim dnom, v bližini Las Islas del Cisne, Honduras
14. 1.	9.18	15,76 J	74,71 Z	39	7,1	2	pod morskim dnom, jugozahodno od kraja Yauca, Peru
23. 1.	6.34	7,20 J	105,92 V	48	5,9	2	pod morskim dnom, južno od kraja Plotot, Indon- ezija
23. 1.	9.31	56,05 S	149,07 Z	25	7,9		pod morskim dnom, Aljaški zaliv
28. 1.	16.03	53,06 J	9,68 V	10	6,6		pod morskim dnom, severovzhodno od otoka Bou- vet
31. 1.	7.07	36,54 S	70,82 V	194	6,2	2	Jarm, Afganistan
31. 1.	23.13	1,76 J	77,70 Z	19	5,2	1	Palora, Ekvador
6. 2.	15.50	24,14 S	121,66 V	17	6,4	17	Hualien, Tajvan
16. 2.	23.39	16,34 S	97,98 Z	22	7,2	14	San Pedro Jicayan, Mehika
25. 2.	17.44	6,07 J	142,77 V	25	7,5	160	Tari, Papua Nova Gvineja
28. 2.	2.45	6,18 J	142,49 V	16	6,1	1	Tari, Papua Nova Gvineja
4. 3.	19.56	6,33 J	142,60 V	10	6,0	11	Mogulu, Papua Nova Gvineja
6. 3.	14.13	6,29 J	142,61 V	21	6,7	25	Mogulu, Papua Nova Gvineja
8. 3.	17.39	4,38 J	153,20 V	23	6,8		pod morskim dnom, območje Nove Irske, Papua Nova Gvineja
26. 3.	9.51	5,46 J	151,40 V	40	6,7		Nova Britanija, Papua Nova Gvineja
29. 3.	21.25	5,50 J	151,50 V	35	6,9		Nova Britanija, Papua Nova Gvineja
2. 4.	13.40	20,66 J	63,01 Z	559	6,8		Carandayti, Bolivija
7.4.	5.48	5,84 J	142,53 V	18	6,3	4	Koroba, Papua Nova Gvineja
18. 4.	6.28	7,25 J	109,62 V	3	4,6	3	Buaran, Indonezija
4. maj	22.32	19,31 S	154,99 Z	2	6,9		pod morskim dnom, območje Havajev
5. 6.	18.40	41,53 S	46,78 V	23	5,3	1	Mamrux, Azerbajdžan
12. 6.	9.35	1,06 S	77,27 Z	10	4,9	2	Puerres, Kolumbija
17.6.	22.58	34,83 S	125,64 V	13	5,5	4	Hirakata, Japonska

deture	čas (UTC)	kooi	rdinati	globina	mag.	število	a hana žia
uatum	ura.min	širina (°)	dolžina (°)	km	M _w	žrtev	obinocje
	time (UTC)	coord	dinates	depth	mag.	number	
date	hh.min	lat (°)	lon (°)	km	km M _w	of victims	area
21.7.	7.58	0,98 J	100,77 V	10	5,2	1	Sirukam, Indonezija
28.7.	22.47	8,24 J	116,51 V	14	6,4	20	Obelobel, Indonezija
5. 8.	11.46	8,26 J	116,4\$ V	31	6,9	513	Loloan, Indonezija
9. 8.	5.25	8,32 J	116,23 V	10	5,9	6	Santong, Indonezija
15. 8.	21.56	51,42 S	178,05 Z	20	6,6		pod morskim dnom, območje otočja Andreanof, Aleuti
17. 8.	15.35	7,43 J	119,83 V	539	6,5		pod morskim dnom, Floreško morje
19. 8.	0.19	18,11 J	178,15 Z	600	8,2		pod morskim dnom, območje Fidžija
19. 8.	4.10	8,33 J	116,60 V	8	6,3	2	Belanting, Indonezija
19. 8.	4.28	16,98 J	178,03 Z	416	6,8		pod morskim dnom, območje Fidžija
19. 8.	14.56	8,33 J	116,63 V	26	6,9	14	Belanting, Indonezija
21. 8.	21.31	10,86 S	62,88 Z	154	7,3	5	pod morskim dnom, blizu San Juana de las Galdo- nas, Venezuela
21. 8.	22.32	16,02 J	168,15 V	13	6,5		pod morskim dnom, območje Vanuatov
24. 8.	9.04	11,04 J	70,82 Z	610	7,1		Manú, Peru
25. 8.	22.13	34,66 S	46,28 V	10	6,0	3	Javānrūd, Iran
29. 8.	3.51	22,07 J	170,05 V	27	7,1		pod morskim dnom, območje Nove Kaledonije
5. 9.	18.07	42,69 S	141,93 V	35	6,6	42	Tomakomai, Hokaido, Japonska
6. 9.	15.49	18,47 J	179,35 V	671	7,9		pod morskim dnom, območje Fidžija
7. 9.	6.23	28,33 S	59,32 V	10	5,5	1	Bam, Iran
9. 9.	19.31	10,02 J	161,50 V	68	6,5		pod morskim dnom, območje Salomonovih otokov
10. 9.	4.19	31,75 J	179,37 Z	111	6,9		pod morskim dnom, območje Nove Zelandije
12. 9.	4.50	26,37 S	90,16 V	10	5,3	1	Sapatgram, Indija
16. 9.	21.11	25,41 J	178,20 V	570	6,5		pod morskim dnom, južno od Fidžija
28. 9.	6.59	0,40 J	119,77 V	18	6,1	1	severno od mesta Palu, Indonezija
28. 9.	10.02	0,18 J	119,84 V	20	7,5	4340	severno od mesta Palu, Indonezija
30. 9.	10.52	18,35 J	178,08 Z	550	6,7		pod morskim dnom, zahodno od Fidžija
7. 10.	0.11	20,03 S	73,01 Z	24	5,9	18	pod morskim dnom, Canal de la Tortue, Haiti
10. 10.	18.44	7,45 J	114,46 V	11	6,0	4	pod morskim dnom, Balijsko morje
10. 10.	20.48	5,69 J	151,20 V	40	7,0		Porlo, Nova Britanija, Papua Nova Gvineja

datum	čas (UTC)	koor	dinati	globina	mag.	število	območio
uatum	ura.min	širina (°)	dolžina (°)	km	M _w	žrtev	Obinocje
data	time (UTC)	coord	dinates	depth	mag.	number	0700
date	hh.min	lat (°)	lon (°)	km	km M _w	victims	area
10. 10.	23.16	49,29 S	156,29 V	18	6,5		pod morskim dnom, območje Kurilskih otokov
13. 10.	11.10	52,86 S	153,24 V	470	6,7		pod morskim dnom, Ohotsko morje
22. 10.	5.39	49,25 S	129,48 Z	11	6,6		pod morskim dnom, zahodno od Vancouvrovega otoka, Kanada
22. 10.	6.16	49,35 S	129,21 Z	10	6,8		pod morskim dnom, zahodno od Vancouvrovega otoka, Kanada
22. 10.	6.22	49,31 S	129,67 Z	10	6,5		pod morskim dnom, zahodno od Vancouvrovega otoka, Kanada
25. 10.	22.54	37,52 S	20,56 V	14	6,8		pod morskim dnom, jugozahodno od Zakintosa, Grčija
28. 10.	0.38	45,65 S	26,40 V	151	5,5		Comandău, Romunija
30. 10.	2.59	37,53 S	20,44 V	10	5,6		pod morskim dnom, jugozahodno od Zakintosa, Grčija
30. 10.	15.12	37,51 S	20,51 V	11	5,7		pod morskim dnom, jugozahodno od Zakintosa, Grčija
9. 11.	1.49	71,63 S	11,24 Z	10	6,8		pod morskim dnom, Grenlandsko morje
14. 11.	23.01	2,91 J	119,39 V	9	5,6	7	Mamasa, Indonezija
18. 11.	20.25	17,87 J	178,93 Z	540	6,8		pod morskim dnom, območje Fidžija
25. 11.	16.37	34,35 S	45,74 V	10	6,3	1	Kermanšah, Iran
30. 11.	17.29	61,35 S	149,96 Z	47	7,1		Anchorage, Aljaska
5. 12.	4.18	21,96 J	169,42 V	10	7,5		pod morskim dnom, območje Nove Kaledonije
5. 12.	6.43	22,06 J	169,73 V	10	6,6		pod morskim dnom, območje Nove Kaledonije
11. 12.	2.26	58,60 J	26,47 Z	165	7,1		pod morskim dnom, območje Južne Georgie in Južnih Sandwichevih otokov
20. 12.	17.01	55,10 S	164,70 V	17	7,3		pod morskim dnom, zahodno od Beringovega otoka
29. 12.	3.39	5,97 S	126,83 V	60	7,0		pod morskim dnom, Filipinsko morje

ali raznovrstno (kompleksno) tektoniko območja. Primerjava satelitskih slik pred in po potresu je pokazala, da se je ob prelomu, ki poteka po zalivu Palu Bay v smeri sever-jug, zgodil zamika tal za okoli štiri metre (slika 4), terenske raziskave pa so potrdile obsežno likvifakcijo tal, tudi v obalnem pasu. Utekočinjenje tal obalnega območja lahko povzroči gravitacijske tokove utekočinjenih sedimentov, ki sprožijo cunamije. Vsaj na devetih mestih znotraj ozkega zaliva se je zgodil ta pojav, kar je skupaj s potresom prispevalo k nastanku tako visokih valov (Sassa & Takagawa, 2019).

Potres in cunami sta zahtevala več kot 4340 žrtev. Nesrečno naključje je bilo, da je bilo takrat veliko ljudi na obali, saj je bil tam festival Pesona Palu Nomoni. Več kot 70.000 zgradb je bilo poškodovanih ali porušenih. V Paluju se je porušil del bolnice in znameniti most Kuning Ponu-

Slika 2: Število potresov po svetu v posameznem letu (1990–2018) z navorno magnitudo med 7,0 in 7,9 (NEIC, 2019d)

Figure 2: Annual number of earthquakes with a moment magnitude of between 7.0 and 7.9 for the period 1990-2018 (NEIC, 2019d).

Slika 3: Nadžarišče potresa na Sulaveziju septembra 2018, ki je zahteval največ življenj v letu 2018 (© Google).

Figure 3: Epicentre of earthquake on Sulawesi in September 2018, the most devastating earthquake in year 2018 (© Google).

Slika 4: Prikaz premikov ob potresu v Indoneziji. Slika je nastala s primerjavo posnetkov satelita Copernicus Sentiel-2, posnetih 17. septembra in 2. oktobra 2018. Z rumeno zvezdico je označeno nadžarišče potresa, črna črta ponazarja potek aktiviranega preloma, puščice in barve pa kažejo smer premika ob njem. (Valkaniotis, 2018)

Figure 4: Indonesia earthquake displacement map. Map was generated using Copernicus Sentinel-2 satelite pictures taken on 17 September and 2 October 2018. Earthquakes epicenter is marked with yellow asterisk, the black line illustrates the activated fault, the arrows and colors show the direction of movement alongside the fault. (Valkaniotis, 2018).

Slika 5: Porušen most Kuning Ponulele (vir: https://www.reuters.com/news/picture/earthquake-and-tsunami-devastate-indones-idUSRTS23EU8) Figure 5: Damaged Kuning Ponulele Bridge.

(Source: https://www.reuters.com/news/picture/earthquake-and-tsunami-devastate-indones-idUSRTS23EU8)

Slika 6: Satelitski posnetek dela indonezijskega mesta Palu, naselja Balaroa, posnet (a) 17. avgusta 2018 in (b) 1. oktobra 2018; pred in po tem, ko sta potres in cunami močno poškodovala to območje. Primerjava slik pokaže, da so številne hiše izginile v blatu, potem ko so se ob močnem tresenju tal ob potresu tla pod njimi utekočinila in so temelji izgubili trdno oporo. (vir: https://abcnews.go.com/ International/death-toll-1200-indonesian-quake-tsunami-catastrophe/story?id=58225541) Figure 6: A stellite image shows the Balaroa neighborhood of Palu, Indonesia, photographed (a) on 17. August 2018 and (b) on 1. October 2018; before and after the earthquake and subsequent tsunami caused heavy damage to the area. A comparison of the pictures shows that many houses disappeared under a sea of brown mud, after strong earthquake shook liquefied soil underneath them and buildings foundations lost support. (Source: https://abcnews.go.com/ International/death-toll-1200-indonesian-quake-tsunami-catastrophe/story?id=58225541) lele, prvi ločni most v Indoneziji (slika 5). Poškodovani so bili komunikacijski sistemi in motena električna oskrba, naselja so se pogreznila v blato (slika 6), uničene so bile cestne povezave in sprožili so se številni zemeljski plazovi. Zaradi razpok na pristajalni stezi ter porušenega letališkega stolpa so morali začasno zaprti letališče, na katerem je obtičalo več sto ljudi, ki so čakali na svoje lete z otoka. Letališče so spet odprli šele 29. septembra, kar je močno oteževalo evakuacijo in dostavo pomoči (2018 Sulawesi earthquake and tsunami, 2019).

Trije najmočnejši svetovni potresi leta 2018, predvsem zaradi velike globine žarišča ali redke poseljenosti, na srečo niso zahtevali življenj. Tudi ti so nastali na območju Ognjenega obroča. Najmočnejši med njimi (M, = 8,2), se je zgodil 19. avgusta na območju Fidžija, globoko (600 km) pod morskim dnom in daleč od naselij. Še enkrat se je območje Fidžija močno (M, = 7,9) streslo 6. septembra, a je bilo žarišče potresa še globlje (670 km). Tudi ta potres ni povzročil škode. Oba sta nastala na območju primičnega stika med Avstralsko in Tihomorsko ploščo, ki je eno izmed potresno najbolj dejavnih na Zemlji. Nadžarišči sta bili približno 700 oziroma 900 kilometrov zahodno od Tongovskega jarka, na območju, kjer se Tihomorska plošča podriva pod Avstralsko s hitrostjo do 81 mm na leto. Hladna oceanska litosfera v območju podrivanja ohranja svojo togost do globine več kot 700 km, zato tu nastajajo najgloblji znani potresi (NEIC, 2018b; NEIC, 2018c). Že v začetku leta, 23. januarja, je potres z magnitudo 7,9 prebudil prebivalce okoli Aljaškega zaliva. Zgodil se je ob 9.31 po UTC (0.31 po lokalnem aljaškem času) pod morskim dnom, 280 kilometrov jugovzhodno od otoka Kodiaka. To je velik otok z le nekaj prebivalci, od kopnega ločen s Shelikofovo ožino. Takoj po potresu je bil sprožen alarm za nevarnost cunamija na obalah Aljaske, Havajev, zahodne obale ZDA in kanadske Britanske Kolumbije. Začela se je evakuacija prebivalstva z nižje ležečih področij v višje. Po štirih urah je bila nevarnost preklicana, saj meritve morske gladine niso potrdile nastanka večjega cunamija. Plitev potres je nastal na zmičnem prelomu znotraj Tihomorske plošče. Ta se na območju Aleutskega jarka, 90 kilometrov severozahodno od nadžarišča potresa, podriva pod Severnoameriško ploščo. Pri potresu se je aktiviral 230 kilometrov dolg in 30 kilometrov širok del preloma (2018 Gulf of Alaska earthquake, 2019; NEIC, 2018d).

Najmočnejši potres leta 2018 v Evropi se je zgodil 25. oktobra ob 22.54 po UTC (ob 1.54 po lokalnem času) z žariščem pod Jonskim morjem v bližini grškega otoka Zakintos, kjer je tudi povzročil največ škode, ne pa tudi žrtev. Magnituda potresa je bila 6,8, globina žarišča pa 14 kilometrov. Potres je sprožil manjši cunami z največjo višino valov 20 centimetrov na obalah Grčije in Italije. Potres so čutili po Balkanu, v Italiji, na Malti, v Libiji in Turčiji. Sledilo mu je več popotresov, najmočnejša med njimi sta se zgodila 30. oktobra ob 2.59 oziroma 15.12 po UTC z magnitudo 5,6 oziroma 5,7.

Sklepne misli

Leta 2018 je bilo po svetu 44 potresov, ki so dosegli ali presegli navorno magnitudo 6,5, med njimi jih je bilo deset, ki svojega žarišča niso imeli pod morskim dnom. Dvaintrideset potresov je zahtevalo človeška življenja. Skupaj so ti potresni dogodki terjali vsaj 5228 življenj. Večino je zahteval potres, ki je septembra prizadel Indonezijo. Najmočnejši potres v Evropi (M_w = 6,8) je oktobra stresel Jonsko morje. Še trije močni potresi so stresli evropsko območje. Dva sta bila popotresa potresa v Jonskem morju (M_w = 5,6 oz. 5,7), tretji pa je nastal v Romuniji na območju Vrancee z žariščem na globini 150 kilometrov.

Viri in literatura

- 2018 Ionian Sea earthquake. Wikipedia [online] (posodobljeno 16. januarja 2020). https:// en.wikipedia.org/wiki/2018_Ionian_Sea_earthquake (uporabljeno 27. februarja 2020).
- 2018 Gulf of Alaska earthquake. Wikipedia [online] (posodobljeno 20. decembra 2019). https:// en.wikipedia.org/wiki/2018_Gulf_of_Alaska_earthquake (uporabljeno 27. februarja 2020).
- 2018 Sulawesi earthquake and tsunami. Wikipedia [online] (posodobljeno 2. februarja 2020). https://en.wikipedia.org/wiki/2018_Sulawesi_earthquake_and_tsunami (uporabljeno 27. februarja 2020).
- Gosar, A. 2017. Likvifakcija sedimentov ob potresu, Ujma št. 31, 151-156.
- Lapajne, J. 2013. Inženirsko-seizmološki terminološki slovar [elektronski vir], Amebis, d. o. o., Kamnik in Agencija RS za okolje, Ljubljana (Zbirka Termania). http://www.termania.net/ slovarji/131/seizmoloski-slovar.
- List of earthquakes in 2018. Wikipedia [online] (posodobljeno 20. februarja 2020). https:// en.wikipedia.org/wiki/List_of_earthquakes_in_2018 (uporabljeno 27. februarja 2020).
- NEIC, 2018a. M 7.5 70 km N of Palu, Indonesia. US Department of the Interior. Geological Survey, National Earthquake Information Center. https://earthquake.usgs.gov/earthquakes/eventpage/us1000h3p4/executive (uporabljeno 27. februarja 2020)
- NEIC, 2018b. M 8.2 286 km NNE of Ndoi Island, Fiji. US Department of the Interior. Geological Survey, National Earthquake Information Center. https://earthquake.usgs.gov/ earthquakes/eventpage/us1000gcii/executive#executive (uporabljeno 27. februarja 2020)
- NEIC, 2018c. M 7.9 102 km ESE of Suva, Fiji. US Department of the Interior. Geological Survey, National Earthquake Information Center. https://earthquake.usgs.gov/earthquakes/ eventpage/us2000h9e2/executive#executive (uporabljeno 27. februarja 2020)
- NEIC, 2018d. M 7.9 280 km SE of Kodiak, Alaska. US Department of the Interior. Geological Survey, National Earthquake Information Center. https://earthquake.usgs.gov/earthquakes/eventpage/pt18023001/executive#executive (uporabljeno 27. februarja 2020)
- NEIC, 2019a. Earthquake Facts. Geological Survey, National Earthquake Information Center. https://earthquake.usgs.gov/learn/facts.php (27. februarja 2020).
- NEIC, 2019b. Significant Earthquakes 2018. US Department of the Interior. Geological Survey, National Earthquake Information Center. https://earthquake.usgs.gov/earthquakes/ browse/significant.php?year=2018 (uporabljeno 27. februarja 2020).
- NEIC, 2019c. Search Earthquake Catalogue. US Department of the Interior. Geological Survey, National Earthquake Information Center. http://earthquake.usgs.gov/earthquakes/search/ (uporabljeno 27. februarja 2020).

- NEIC, 2019d. Earthquake Statistics. US Department of the Interior. Geological Survey, National Earthquake Information Center. https://earthquake.usgs.gov/earthquakes/browse/stats. php (uporabljeno 27. februarja 2020).
- Sassa, S., Takagawa, T., 2019. Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters. Landslides. 16 (1): 195–200. doi:10.1007/s10346-018-1114-x.
- Sulawesi. Wikipedia [online] (posodobljeno 26. januarja 2020). https://en.wikipedia.org/wiki/Sulawesi (uporabljeno 27. februarja 2020).
- Struktura Zemlje. Wikipedija [online] (posodobljeno 1. oktobra 2019). https://sl.wikipedia.org/ wiki/Struktura_Zemlje (uporabljeno 27. februarja 2020).
- Valkaniotis, S., 2018. Displacement from Sentinel-2 imagery Processed with MPIC-OPT Geohazards TEP Earthquakes sequence epicenters from USGS. http://www.esa.int/spaceinimages/ Images/2018/10/Indonesia_earthquake_displacement_map (uporabljeno 27. februarja 2020).

Milka Ložar Stopar, Mladen Živčić

Žariščni mehanizmi močnejših potresov v Sloveniji v letih 2017 in 2018 Fault Plane Solutions Of Earthquakes in Slovenia in 2017 and 2018

Povzetek

Močnejšim potresom, ki so se leta 2017 in 2018 zgodili v Sloveniji, smo iz seizmogramov odčitali smeri prvih premikov ob vstopu vzdolžnega (longitudinalnega) valovanja. Pri trinajstih potresih smo zbrali zadostno število podatkov za določitev žariščnega mehanizma. Lokalna magnituda (M_{LV}) obravnavanih potresov je bila v razponu od 2,1 do 3,5. Žariščni mehanizem obravnavanih potresov je največkrat zmik ali zmik z manjšo narivno komponento, pogosteje se pojavljajo tudi nariv, in nariv s poudarjeno zmično komponento. Navajamo tudi rešitev za dva potresa, ki so jim določili žariščni mehanizem v tujini.

Abstract

The first onsets of the arrivals of the longitudinal waves were picked on the seismograms of selected earthquakes in Slovenia in 2017 and 2018. Enough data to determine fault plane solutions was available for 6 events with local magnitudes ranging from M_{LV} =2.1 to 3.5. Focal mechanisms are found to be mostly of strike slip or transpressive type. Fault plane solutions of the two strongest earthquakes from foreign institutions is given for comparison.

Uvod

Z žariščnim mehanizmom opišemo izvor potresnega valovanja. Uporabljeni postopek temelji na določitvi smeri prvega premika vzdolžnega potresnega valovanja na lokaciji potresne opazovalnice. Smer premika odčitamo na navpični komponenti zapisa potresa kot zgostitev (kompresijo) ali razredčitev (dilatacijo). Metodo (Snoke in drugi, 1984), ki smo jo uporabili, smo natančneje opisali v publikacijah preteklih let (Ložar Stopar, Živčić, 2008 in 2011).

Rezultati

V tem prispevku podajamo parametre žariščnega mehanizma za potrese, ki so se v letu 2017 in 2018, zgodili v Sloveniji. Za leto 2017 smo parametre žariščnega mehanizma določili trem potresom, za leto 2018 pa desetim. Za določitev žariščnega mehanizma potrebujemo zadostno število seizmogramov, s katerih lahko odčitamo smer vstopa valovanja na navpični komponenti zapisa posamezne opazovalnice.

Število seizmogramov, na katerih je bila smer premika jasno določljiva, je bilo od potresa do potresa različno. Med izbranimi potresi je imel največjo magnitudo (M_{LV} = 3,5) potres, ki se je zgodil 17. januarja 2018 ob 10.22 po UTC v bližini Bovca. Smer vstopnega valovanja pri tem potresu smo določili na seizmogramih sedeminpetdesetih opazovalnic. Najbolj oddaljena opazovalnica z oznako A101B, na kateri smo odčitali prvi premik valovanja za najmočnejši potres v letu 2018, je bila od žarišča potresa pri Bovcu oddaljena 430 km. To je le ena od mnogih, ki smo jih uporabljali za določitev žariščnih mehanizmov in so v tem obdobju sestavljale Alparray mednarodno mrežo opazovalnic (AlpArray Seismic Network, 2015). Potresu z magnitudo M_{LV} = 2,5, ki se je zgodil 23. novembra 2017 pri Kranjski Gori, smo odčitali devetnajst vstopov, kar je bilo med vsemi trinajstimi potresi najmanj. Lokalna magnituda (M_{LV}) potresov je bila v razponu od 2,1 do 3,5.

Parametri žariščnega mehanizma vseh potresov so zbrani v preglednici 1, njihova geografska lega je prikazana na sliki 1. Rešitve prelomnih ravnin z relativno lego opazovalnic in odčitano smerjo vstopa vzdolžnega valovanja so predstavljene v stereografski projekciji na spodnjo poloblo na sliki 2.

Rešitve prelomnih ravnin na sliki 2 kažejo, da je bil za pet potresov značilen zmični prelom, dva potresa imata najbolj poudarjeno zmično komponento, preostalih šest pa najbolje opišejo kombinacije med zmičnimi in reverznimi prelomi. Kot smo pri določanju žariščnih mehanizmov za območje Slovenije ugotovili že v prejšnjih letih, se tudi v letu 2017 in 2018 niso pojavljale rešitve

Figure 1: Locations and fault plane solutions of thirteen earthquakes with epicentres in Slovenia in 2017 and 2018. Coloured quadrants represent compression, colour represents focal depth and size represents local magnitude M_{LV}

z normalnimi prelomi. Razvrščanje posameznega potresa glede na značilen tip žariščnega mehanizma smo naredili tudi z računalniškim programom FMC (Álvarez-Gómez, 2014). Razvrstitev po tej metodi je podana v zadnjem stolpcu preglednice 1.

Slika 2: Žariščni mehanizmi trinajstih močnejših potresov na ozemlju Slovenije leta 2017 in 2018. Kvadratki predstavljajo opazovalnice, ki so kot prvi premik tal zaradi potresa zabeležile razredčitev, krogci pa opazovalnice, ki so zabeležile zgostitev. Označeni sta smeri največje (P) in najmanjše (T) napetosti. Podana je projekcija na spodnjo poloblo.

Figure 2: Fault plane solutions of thirteen stronger earthquakes in Slovenia in 2017 and 2018. Squares denote stations with dilatation as the first onset and circles denote stations with compression. P and T describe maximum and minimum stress axes, respectively. Lower hemisphere projection is applied.

rection taken so that the plane dips to the right, measured from the North through East (Aki's convention), dip of the fault is measured from the horizontal Table 1: Focal mechanism solutions of the selected earthquakes with epicentres in Slovenia in 2017 and 2018. Strike is the azimuth of the horizontal diolane and rake is the angle of slip, measured in the plane of the fault from the strike direction to the slip vector. P is maximum and T is minimum pressu-Aki in Richards, 2002). P je os največje in T os najmanjše napetosti. Np je število uporabljenih podatkov o smeri prvih premikov. Nnp je število odčitkov zzhodu, tako da je prelomna ploskev nagnjena v desno, naklon je merjen od vodoravne ravnine, premik je merjen v prelomni ploskvi od smeri preloma neskladnih z rešitvijo. Klasifikacija tipa žaniščnega mehanizma posameznega potresa je določena glede na FMC (Áwarez-Gómez, 2014), kjer posamere axis, respectively. Np is the number of P-wave first motion polarities used. Nnp is number of inconsistent P-wave first motion polarities. Classification Preglednica 1: Parametri žariščnih mehanizmov obravnavanih potresov na ozemlju Slovenije v letu 2017 in 2018. Smer je merjena od severa proti zne črke predstavljajo značilnost preloma, SS: zmični prelom; SS-R: zmično reverzni prelom; R-SS: reverzno zmični prelom in R: reverzni prelom. diagram (Álvarez-Gómez 2014) . SS: Strike-slip; SS-R: Strike-slip - Reverse; R-SS: Reverse - Strike-slip; R: Reverse

ţij	zariscnega mehanizma	rupture	type	R-SS	SS	SS	R-SS	R	Я	R-SS	SS-R	SS	R-SS	SS-R	SS	SS
duN	neskladni vstopi	Nnp	inconsistent polarities	4	0	0	٢	0	0	0	0	0	٢	0	0	0
ЧŅ	število vstopov	dN	polarities	48	31	19	57	20	21	32	42	34	24	30	36	36
	naklon	L	plunge	65	0	0	18	89	74	53	25	0	44	35	0	13
	smer		azimuth	80	105	75	282	122	228	81	95	95	53	83	95	92
٩.	naklon	٩.	plunge	0	0	0	18	6	5	ø	4	0	19	0	15	9
	smer		azimuth	170	15	345	160	6	336	340	с	5	162	173	5	0
2	premik	le 2	rake	123	-180	-180	137	122	109	141	165	-180	132	154	-170	175
avnina	naklon	dal plar	dip	50	06	06	35	40	52	48	70	6	75	66	62	76
-	smer	Õ	strike	102	330	300	283	121	260	104	137	320	102	123	141	136
-	premik	e 1	rake	57	0	0	63	99	67	49	21	0	22	26	-11	14
avnina	naklon	dal plan	dip	50	06	06	67	57	42	62	76	06	44	66	80	85
	smer	e 2	strike	237	60	30	50	262	50	222	232	50	208	224	49	227
	2	MLV		2,9	2,2	2,5	3,5	2,1	2,3	2,6	2,7	2,4	2,4	2,8	3,4	2,1
globina	к <mark>ж</mark>	depth	km	œ	11	16	6 F	12 F	8 F	7 F	19	10 F	10 F	15 F	14 F	10 F
zem. dolž.	ĥ	long.	ĥ	14,94	15,11	13,76	13,58	14,97	14,28	15,8	14,63	15,09	14,15	14,2	14,35	15,09
zem. širina	Å	lat.	°	46,05	46,08	46,46	46,33	45,85	46,05	46,05	45,91	46,02	46,09	45,96	45,67	45,97
čas (UTC)	hh.mm	time (UTC)	hh.mm	10.22	10.51	11.20	10.22	10.51	11.20	17.11	06.25	15.07	10.48	07.57	16.23	18.25
	datum		date	6. 7. 2017	6.8.2017	23. 11. 2017	17. 1. 2018	11. 2. 2018	28.3.2018	11. 6. 2018	11.8.2018	17.8.2018	16. 11. 2018	20. 11. 2018	5. 12. 2018	25. 12. 2018

Pri določanju parametrov žariščnega mehanizma potresa smo na Uradu za seizmologijo (ARSO) uporabili metodo (Snoke in drugi, 1984), ki temelji na smeri prvih premikov vzdolžnega potresnega valovanja na lokacijah potresnih opazovalnic.

Z metodo inverzije tenzorja potresnega navora so parametre žariščnega mehanizma za potres 6. julija 2017 ob 16.58 UTC določili v Rimu pri INGV. Enako metodo so za potres 17. januarja 2018 ob 10:22, na INOGS v Trstu (INOGS, 2018. Povzetek parametrov njihovih rešitev je zbran v preglednici 2.

Preglednica 2: Parametri žariščnega mehanizma za potres 6. julija 2017 ob 16.58 UTC in 17. januarja 2018, določeni z inverzijo tenzorja potresnega navora na INGV v Rimu (INGV, 2018) ter na INOGS v Trstu (INOGS, 2018).

Table 2: Focal mechanisms parameters for the earthquake on 6 July 2017 at 16:58 UTC and on 17 January 2018 at 10:22, determined by inversion of seismic moment tensor at INGV (INGV, 2018) and at INOGS (INOGS, 2018).

datum	čas (UTC)	outor	zem. širina	zem. dolž.	globina		r	avnina	1	ravnina 2			N	
datum	hh.mm	avtor	avtor	°N	°E	km		smer	naklon	premik	smer	naklon	premik	število opazov.
1	time (UTC)		lat.	long.	depth	w	no	nodal plane 1		nodal plane			N	
date	ate hh.mm		°N	°E	km		strike	dip	rake	strike	dip	rake	No. of stations	
6. 7. 2017	16.58	INGV	46,0248	14,9612	7	3,4	91	47	93	267	43	87	10	
17. 1. 2018	10.22	INOGS	46,3167	13,5782	8	3,8	32	77	15	299	77	167	5	

Zahvala

Zapise potresov na opazovalnicah v Avstriji, v pokrajini Furlanija-Julijska krajina v Italiji in na Hrvaškem smo pridobili v okviru Mednarodnega sporazuma o izmenjavi seizmoloških podatkov v stvarnem času na področju Alpe-Jadran v okviru Srednje in vzhodno evropske mreže za raziskave potresov CE3RN (2019). Slike smo izdelali s programom GMT (Wessel in Smith, 1991, 1998).

Viri in literatura

- AlpArray Seismic Network, 2015. AlpArray Seismic Network (AASN) temporary component. AlpArray Working Group. https://doi.org/10.12686/ALPARRAY/Z3_2015
- Álvarez-Gómez, J.A. (2014) FMC: a one-liner Python program to manage, classify and plot focal mechanisms. Geophysical Research Abstracts, Vol. 16, EGU2014-10887
- INGV, Osservatorio Nazionale Terremoti (National Earthquake Observatory), Roma, 2018. http://cnt.rm.ingv.it/en/event/16209281?timezone=UTC (uporabljeno 17. 3. 2020).
- INOGS, Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Trieste, 2018. http://rts.crs.inogs.it/event/42911/detail.html (uporabljeno 17. 3. 2020).

- Ložar Stopar, M., Živčić, M., 2008. Žariščni mehanizmi nekaterih močnejših potresov v Sloveniji v letih 2006 in 2007. Potresi v letu 2007 (ur. R. Vidrih). Agencija Republike Slovenije za okolje, Ljubljana, 48–53.
- Ložar Stopar, M., Živčić, M., 2011. Žariščni mehanizmi nekaterih močnejših potresov v Sloveniji v letih 2008 in 2009. Potresi v letu 2010 (ur. A. Gosar). Agencija Republike Slovenije za okolje, Ljubljana, 71–75.
- Snoke, J.A., Munsey, J.W., Teague, A.G. in Bollinger, G.A., 1984. A Program for Focal Mechanism Determination by the Combined Use of Polarity and SV-P Amplitude Ratio Data, Earthquake Notes, 55, No. 3, p. 15.
- The Central and Eastern European Earthquake Research Network CE3RN, 2016. http://www.ce3rn.eu/ (uporabljeno 10. 2. 2019).
- Wessel, P. in Smith, W.H.F., 1991. Free software helps map and display data, Eos, Trans. Amer. Un., Vol.72(441), str. 445-446.
- Wessel, P. in Smith, W.H.F., 1998. New, improved version of the Generic Mapping Tools released, EOS Trans. AGU, Vol. 79, str. 579.

Dogodki v letu 2018 2018 Events

Prenovljene spletne strani ARSO potresi

19. aprila 2018 smo stare spletne strani zamenjali z novimi stranmi ARSO potresi. Pri tem smo posodobili pregled zadnjih potresov, obvestila o potresih, opis potresnih opazovalnic in vprašalnik o učinkih potresa.

IT kolegij

26. marca 2018 se je prvič sestal IT kolegij, ki je bil ustanovljen na pobudo namestnika direktorja Gregorja Sluge, da bi v tem okviru predstavniki uradov učinkoviteje usklajevali aktivnosti na področju informacijskih tehnologij in IT oddelku posredovali zahteve po potrebah uradov. Kolegij se je sprva sestajal dvakrat mesečno, kasneje pa enkrat mesečno. Predstavnik Urada za seizmologijo je Jurij Pahor.

20 let po potresu v Zgornjem Posočju - Kako smo pripravljeni na tak potres?

12. aprila 2018, natanko 20 let po potresu v Zgornjem Posočju, je ARSO s predavanji obeležil obletnico potresa. Predstavili smo glavne značilnosti in posledice tega potresa, popotresno sanacijo ter našo pripravljenost na močan potres. Pojasnili smo, kako se je v zadnjih 20 letih razvijala seiz-

mologija, ocenjevanje ranljivosti in ogroženosti stavb ter organizacija in načrtovanje organov Civilne zaščite ob močnem potresu.

Program:

- Pozdravni nagovor (dr. Andrej Gosar, direktor Urada za seizmologijo)
- 20 let po potresu v Zgornjem Posočju (dr. Martina Čarman, dr. Barbara Šket Motnikar, ARSO)
- Ranljivost in poškodbe stavb v Zgornjem Posočju (mag. Marjana Lutman, Zavod za gradbeništvo Slovenije)
- Dejavnosti Ministrstva za okolje in prostor (Ervin Vivoda, MOP)
- Delo Državne tehnične pisarne v popotresni obnovi (dr. Blaž Dolinšek, Gradbeni inštitut ZRMK)
- Državni načrt ob močnem potresu (Srečko Šestan, poveljnik Civilne zaščite RS)

Evropsko srečanje uporabnikov seizmološkega programskega paketa Antelope

ARSO je od 7. do 9. maja 2018 gostil seizmologe evropskega prostora in predstavnike nekaterih seizmoloških ustanov Azije, Afrike in Severne Amerike, ki za upravljanje seizmoloških podatkov uporabljajo programski paket Antelope. Na srečanju so sodelovali razvijalci tega paketa iz podjetja Boulder Real Time Technologies (BRTT) iz ZDA in predstavniki podjetja Kinemetrics iz ZDA, ki izdelujejo seizmološke merilne sisteme.

Programski paket Antelope omogoča zajem, obdelavo, arhiviranje in izmenjavo seizmoloških podatkov. Je izjemno obsežen sistem, saj ga sestavlja približno 450 modulov, poleg tega pa ga razvijalec BRTT nenehno razvija in prilagaja zahtevam uporabnikov. Na srečanju je podjetje BRTT predstavilo novosti v novi verziji Antelope ter načrtovane novosti za prihodnjo verzijo, uporabniki pa so spregovorili o težavah pri uporabi produktov ter o pričakovanjih in želenih smernicah pri nadaljnjem razvoju te programske opreme.

Obenem je bilo srečanje priložnost, da si z udeleženci izmenjamo izkušnje pri uporabi paketa Antelope in se dogovorimo za sodelovanje in izmenjavo podatkov.

Na zelo uspešnem srečanju v Ljubljani se je zbralo 31 strokovnjakov 17 seizmoloških ustanov iz Alžirije, Avstrije, Azerbajdžana, Izraela, Italije, Južne Koreje, Katarja, Maroka, Nemčije, ZDA in Slovenije. Otvoritev je pospremil pevski zbor ARSOpoje.

Po srečanju smo gostili še delavnico o uporabi instrumentov Basalt in Etna 2, ki jo je pripravil Dennis Pumphrey iz podjetja Kinemetrics. Delavnice so se udeležili strokovnjaki iz partnerskih podjetij Kinemetric v Italiji in Srbiji.

Spletna stran srečanja s programom in predstavitvenimi datotekami je dostopna na: http://www. arso.gov.si/AUG2018/index.html

Informativni dan EPOS

Projekt EPOS IP (European Plate Observing System Implemetation Phase) je v okviru svojih dejavnosti komuniciranja in razširjanja informacij 29. in 30. maja 2018 v Ljubljani organiziral »EPOS

foto: Matej Blatnik

Info day«. Ta pobuda, načrtovana v komunikacijskem načrtu EPOS, je bila namenjena razširjanju, obveščanju ter sčasoma vključevanju potencialnih uporabnikov in deležnikov infrastrukture EPOS.

ARSO je član konzorcija slovenskih institucij, ki sodelujejo pri evropskem projektu EPOS. Ta projekt želi vzpostaviti infrastrukturo za pretok raznovrstnih podatkov in produktov, raziskav in znanja, ter tako omogočiti multidisciplinarne raziskave na področju opazovanja dinamike tektonskih plošč. Projekt bo ob svojem zaključku ponujal infrastrukturo za raznovrstne multidisciplinarne raziskave, ki pa jih brez poznavanja in aktivnega sodelovanja ne bomo mogli uporabiti.

Informativni dan EPOS je bil priložnost za predstavitev globalnih perspektiv vseevropske infrastrukture EPOS in poudarjanje njenega vpliva na znanost o trdni Zemlji. Dogodek je bil namenjen potencialnim uporabnikom in zainteresiranim stranem iz območja vzhodnega Jadrana, to je znanstvenikom raziskovalnih organizacij in univerz, oblikovalcem politike in drugim, ki jih zanima spoznavanje EPOS, njegovem zagotavljanju v smislu znanstvenih podatkov, izdelkov in storitev, pa tudi spodbujanju medregionalnega in mednarodnega sodelovanja v razširjeni Evropi.

Regionalno strokovno srečanje za posodobitev Evropske karte potresne nevarnosti

Srečanje udeležencev na EPOS IS je bilo 30. in 31. maja 2018 nadgrajeno z regionalnim strokovnim sestankom na temo posodobitve in usklajevanja vhodnih podatkov za nacionalne karte potresne nevarnosti ter za Evropsko karto potresne nevarnosti. Srečanja se je poleg petih sodelavcev ARSO udeležilo še 11 strokovnjakov iz 8 držav.

Vrtnarjenje na Vrtu eksperimentov v času 10. Znanstivala v Ljubljani

Ekipa ARSO potresi v sestavi Martina Čarman, Ina Cecić, Jurij Pahor, Gregor Rajh (podiplomski študent) in Matej Šajn (srednješolec) smo se udeležili 5. Vrta eksperimentov, ki se je v okvirju 10. Znanstivala dogajal na Stritarjevi ulici v Ljubljani 3. junija 2018. Znanstival organizira Hiša eksperimentov, ki k sodelovanju povabi institucije, ki se ukvarjajo s promocijo izobraževanja in znanosti.

Na stojnici smo predstavili ljubljanski potres, učni seizmograf in seizmološke mobilne aplikacije. Stojnico je obiskalo veliko otrok in odraslih, ki so z veseljem in zanimanjem spremljali razlage in sodelovali v poskusih in ugankah. Odziv je bil dober. Podelili smo veliko informativnih letakov. Otroci so bili najbolj navdušeni nad tem, da lahko naredijo svoj potres in ga vidijo zapisanega na seizmogramu.

Predavanje izr. prof. dr. Hrvoja Tkalčića

V ISKANJU SVETEGA GRALA SODOBNE GLOBALNE SEIZMOLOGIJE: NOVI POGLEDI V SREDIŠČE ZEMLJE Z DETEKCIJO J SEIZMIČNIH VALOV

V prostorih ARSO smo 20. julija 2018 prisluhnili dr. Hrvoju Tkalčiću, izr. prof. avstralske narodne univerze. Odstiral nam je pogled v središče Zemlje s pomočjo J seizmičnih valov.

Z J seizmičnimi valovi označujemo strižno valovanje v Zemljinem notranjem jedru. Ker strižno valovanje lahko potuje le v trdni snovi, je na nek način »ujeto« v trdnem Zemljinem notranjem jedru. V tekoče Zemljino zunanje jedro ne more preiti kot strižno valovanje. Zato so bili J valovi v seizmologiji označeni kot sveti gral sodobne seizmologije, saj je brez njihovega poznavanja ta del Zemljine notranjosti ostajal nedostopen in zato nepoznan. Avstralski raziskovalci, med njimi tudi predavatelj, so nedvoumno pokazali, da ti valovi obstajajo, in pri tem odkrili tudi nekaj lastnosti notranjega jedra, denimo, da so hitrosti v notranjem jedru drugačne za 2,5 odstotka.

Predavanje je bilo lepo obiskano. Med poslušalci so bili tako uslužbenci ARSO kot zunanji udeleženci.

Predavanje dijakom na fizikalnem taboru v Plemljevi vili na Bledu

V okviru fizikalnega tabora za izbrane dijake od 2. do 4. letnika srednje šole v Plemljevi vili na Bledu je imela 25. septembra 2018 Martina Čarman predavanje z naslovom Preiskovalci na delu: Potres. Na taboru in predavanju je bilo 13 dijakov od 2. do 4. letnika srednje šole, ki so leto prej na državnem tekmovanju iz fizike dobili kakšno nagrado.

Predstavitev knjige Bilo je res grozljivo, bobnelo in grmelo je pod nami

Društvo za oživitev mesta Brežice v sodelovanju z znanstveno založbo Filozofske fakultete Univerze v Ljubljani, Arhivom Republike Slovenije in Agencijo Republike Slovenije za okolje je 12. oktobra 2018 v Malem avditoriju Posavskega muzeja Brežice predstavilo monografijo Bilo je res grozljivo, bobnelo in grmelo je pod nami, Brežiški potres 1917, Brežiške študije 5. Knjigo sta predstavila avtorja prof. dr. Dušan Nečak in Ina Cecić skupaj z urednikom dr. Jožetom Škofljancem.

V monografiji se prepletajo trije vidiki brežiškega potresa. Eden je zgodovinski vidik, ki se nanaša na v potresu močno prizadeta naselja, od mesta Brežice z gradom do bližnjih krajev, ki so del današnje brežiške občine (npr. vasi Čatež ob Savi in Krška vas) in širšega področja. Drugi vidik je seizmološki, saj prinaša ponovno določitev moči tedanjega potresa in njegovega nadžarišča. Tretji vidik pa je prevod popisa škode, ki ga je po »velikem potresu« pripravila komisija za ocenitev potresne škode. In ta je pričevalec življenja naših prednikov, saj se za zabeleženo škodo skrivajo zgodbe posameznikov.

Celotna Državna mreža potresnih opazovalnic posodobljena s pospeškometri

29. novembra 2018 je Agencija Republike Slovenije za okolje zaključila z namestitvijo seizmoloških pospeškometrov na vse potresne opazovalnice Državne mreže potresnih opazovalnic.

Na podlagi zgodovinskih virov lahko sklepamo, da velikost potresa z žariščem v Sloveniji ali neposredni bližini lahko preseže magnitudo 6. Če bi bile potresne opazovalnice opremljene samo s širokopasovnimi seizmometri, bi bili podatki pri potresu te velikostne stopnje v radiju sto kilometrov od nadžarišča potresa najverjetneje prekrmiljeni, zagotovo pa bi bili podatki iz bližnjih opazovalnic v celoti neuporabni. S pospeškometri tak izpad podatkov preprečimo. Zato smo za celovito spremljanje potresne dinamike na potresnih opazovalnicah Državne mreže potresnih opazovalnic poleg seizmometrov postavili tudi pospeškometre. Podatke iz obeh sistemov združi zajemalna enota v enoten merilni sistem, ki beleži izredno šibke potresne signale in močnejše potresne sunke v neposredni bližini lokacije merilnega sistema. Samo pospeškometri niso primerni za beleženje šibkih seizmičnih signalov, samo seizmometri pa ne za beleženje zelo močnih potresnih sunkov.

Projekt POTROG uvrščen na seznam inovacij v javnem sektorju

Urad za seizmologijo na ARSO že veliko let tesno sodeluje z Upravo RS za zaščito in reševanje na področju potresne ogroženosti. Eden najbolj odmevnih in uporabnih rezultatov je bil razvoj spletnih

orodij v okviru projekta POTROG (Potresna ogroženost Slovenije za potrebe civilne zaščite): http:// potrog2.vokas.si/. Projekt je naročilo in financiralo Ministrstvo za obrambo, URSZR, izvedli pa smo ga skupaj z Zavodom za gradbeništvo (vodilni partner) in Inštitutom za vodarstvo.

Mednarodna nevladna Organizacija za gospodarsko sodelovanje in razvoj (OECD - The Organisation for Economic Co-operation and Development) je novembra 2018 projekt izbrala kot projekt dobre prakse in ga uvrstila na seznam inovacij v javnem sektorju ter objavila na spletni strani OPSI (Observatory of Public Sector Innovation).

Seizmološki delavnici v Pionirskem domu Ljubljana

Na delavnicah Znanost za otroke smo 17. in 19. decembra v Pionirskem domu Ljubljana predstavili zanimivosti iz sveta seizmologije in geologije.

Jurij Pahor, Anita Jerše Sharma in Miha Lanjšček so dvema skupinama otrok, starih med 5 in 12 let, z različnimi učnimi pripomočki prikazali nekatere osnovne geološke pojme, kot sta sestava Zemlje in tektonika, ter osnovne pojme iz seizmologije, kot so različni tipi potresnih valov, merjenje potresnih valov ter preučevanje Zemljine notranjosti s pomočjo potresov.

Prikazali so delovanje pravega seizmometra, sestavili so tudi preprost domač model seizmometra, ter ob njem razložili osnove delovanja tega inštrumenta.

Na pomanjšanih modelih so prikazali odziv predmetov in stavb različnih oblik na potresno valovanje. Otroci so predstavitvi sledili z velikim zanimanjem in navdušeno sodelovali z odgovori na razna vprašanja ter pri nekaterih poskusih.